我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

这里有一个我从未见过的变体。因为这是ruby,所以32位整数的东西就不见了(当然可以添加检查)。

def f(n)
    case n
    when Integer
        proc { n * -1 }
    when Proc
        n.call
    else
        raise "Invalid input #{n.class} #{n.inspect}"
    end
end

(-10..10).each { |num|
    puts "#{num}: #{f(f(num))}"
}

其他回答

怎么样

int f(int n)
{
    return -abs(n);
}

f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。

object f: (object) x {
    if (x.length == 1)
        x = (x, 0)
    swap = x[0]
    x[1] = x[0]
    x[0] = -swap
    if (x[1] == 0)
        x = x[0]
    return x

我认为这些问题的答案最好用图表直观地解释。当我们忽略零时,我们可以将整数分成4个数的小集合:

 1  → 2    3  → 4    5  → 6
 ↑    ↓    ↑    ↓    ↑    ↓   ...
-2 ← -1   -4 ← -3   -6 ← -5

这很容易翻译成代码。注意,偶数改变符号,奇数增加或减少1。在C#中,它看起来像这样:

public static int f(int x)
{
    if(x == 0)
        return 0;

    if(x > 0)
        return (x % 2 == 0) ? -x+1 : x+1;

    // we know x is negative at this point
    return (x % 2 == 0) ? -x-1 : x-1;
}

当然,您可以通过使用巧妙的技巧来缩短此方法,但我认为这段代码最好地解释了它本身。

然后是范围。32位整数的范围从-2^31到2^31-1。数字2^31-1、-2^31-1和-2^31超出了f(x)的范围,因为缺少数字2^31。

除int.MaxValue和int.MinValue以外的工作

    public static int f(int x)
    {

        if (x == 0) return 0;

        if ((x % 2) != 0)
            return x * -1 + (-1 *x) / (Math.Abs(x));
        else
            return x - x / (Math.Abs(x));
    }

这里有一个解决方案,其灵感来自于不能使用复数来解决这个问题的要求或声明。

乘以-1的平方根是一个想法,但似乎失败了,因为-1没有整数的平方根。但是,使用mathematica这样的程序可以得出如下公式

(18494364652+1)模(232-3)=0。

这几乎和平方根为-1一样好。函数的结果必须是有符号整数。因此,我将使用一个修改的模运算mods(x,n),它返回与x模n最接近0的整数y。只有极少数编程语言能够成功地进行模运算,但它很容易被定义。例如,在python中,它是:

def mods(x, n):
    y = x % n
    if y > n/2: y-= n
    return y

使用上面的公式,问题现在可以解决为

def f(x):
    return mods(x*1849436465, 2**32-3)

对于[-231-2231-2]范围内的所有整数,这满足f(f(x))=-x。f(x)的结果也在这个范围内,但当然计算需要64位整数。