我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
嗯,我既不是数学,也不是编程高手,但这不是很容易吗?
int f(int i) {
static bool b;
if (b) {
b = !b;
return i;
} else {
b = !b;
return -i;
}
}
用大小正值和负值INT_MIN、INT_MAX进行测试,似乎可以。。。如果这是一个问题,可以使线程安全,但这不是任务的一部分。
或者我错过了什么?
其他回答
C++
struct Value
{
int value;
Value(int v) : value(v) {}
operator int () { return -value; }
};
Value f(Value input)
{
return input;
}
将n转换为符号和幅度表示;添加范围的1/4;转换回。
#define STYPE int
STYPE sign_bit = (unsigned STYPE) 1 << ( sizeof ( STYPE ) * 8 - 1 );
STYPE f ( STYPE f )
{
unsigned STYPE smf = f > 0 ? f : -f | sign_bit;
smf += sign_bit >> 1;
return smf & sign_bit ? -( smf & ~sign_bit ) : smf;
}
我可以想象,使用第31位作为虚(I)位将是一种支持一半总范围的方法。
另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。
Ruby示例:
class Cheat
def ==(n)
true
end
end
def f(n)
Cheat.new
end
这给了我们:
>> f(f(1)) == -1
=> true
而且(不太令人惊讶)
>> f(f(1)) == "hello world"
=> true
return x ^ ((x%2) ? 1 : -INT_MAX);