我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

return x ^ ((x%2) ? 1 : -INT_MAX);

其他回答

对于javascript(或其他动态类型语言),可以让函数接受int或对象,并返回另一个。即

function f(n) {
    if (n.passed) {
        return -n.val;
    } else {
        return {val:n, passed:1};
    }
}

js> f(f(10))  
-10
js> f(f(-10))
10

或者,您可以在强类型语言中使用重载,尽管这可能会破坏规则

int f(long n) {
    return n;
}

long f(int n) {
    return -n;
}
return x ^ ((x%2) ? 1 : -INT_MAX);
const unsigned long Magic = 0x8000000;

unsigned long f(unsigned long n)
{    
    if(n > Magic )
    {
        return Magic - n;
    }

    return n + Magic;
} 

0~2^31

f#中的简单解决方案(不使用“技巧”)

let rec f n =
    if n = 0 then 0
    elif n > 0 then
        if (f (n - 1) <> n) then n + 1
        else -(n - 1)
    else
        if (f (-(n - 1)) = n) then n - 1
        else -(n + 1) 

使用问题中给出的信息,您可以

从2-完成转换为符号位表示如果设置了最后一位,则翻转符号位和最后一位;否则,只翻转最后一位转换回2-完成。

所以你基本上是奇数->偶数->奇数或偶数->奇数->偶数,只对偶数更改符号。唯一不适用的数字是-2^31

代码:

function f(x) {
  var neg = x < 0;
  x = Math.abs(x) ^ 1;
  if (x & 1) {
    neg = !neg;
  }
  return neg ? -x : x;
}