我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
使用全局。。。但事实如此?
bool done = false
f(int n)
{
int out = n;
if(!done)
{
out = n * -1;
done = true;
}
return out;
}
其他回答
这个想法已经在其他答案中使用过,但我把它融入了Python的一行:
def f(n):
return str(n) if type(n) == int else -int(n)
或者,您可以滥用预处理器:
#define f(n) (f##n)
#define ff(n) -n
int main()
{
int n = -42;
cout << "f(f(" << n << ")) = " << f(f(n)) << endl;
}
上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。
红宝石:
def f( n )
return 0 unless n != 0
( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
看起来很简单。
<script type="text/javascript">
function f(n){
if (typeof n === "string") {
return parseInt(n, 10)
}
return (-n).toString(10);
}
alert(f(f(1)));
</script>