我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
也许是作弊?(python)
def f(n):
if isinstance(n, list):
return -n[0]
else:
return [n,0]
n = 4
print f(f(n))
--output--
-4
其他回答
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
从来没有人说过f(x)必须是同一类型。
def f(x):
if type(x) == list:
return -x[0]
return [x]
f(2) => [2]
f(f(2)) => -2
它通过保存状态来作弊,但它有效,将操作分成两部分:-n=(~n+1)对于整数
int f(int n) {
static int a = 1;
a = !a;
if (a) {
return (~n);
} else {
return (n+1);
}
}
好问题!
这花了我大约35秒的时间思考并写下:
int f(int n){
static int originalN=0;
if (n!=0)
originalN=n;
return n-originalN;
}
Java脚本
function f(n) {
return typeof n === "number" ?
function() {return -n} :
n();
}