我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

也许是作弊?(python)

def f(n):    
    if isinstance(n, list):
        return -n[0]
    else:
        return [n,0]    
n = 4
print f(f(n))

--output--
-4

其他回答

f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。

object f: (object) x {
    if (x.length == 1)
        x = (x, 0)
    swap = x[0]
    x[1] = x[0]
    x[0] = -swap
    if (x[1] == 0)
        x = x[0]
    return x

该问题表示“32位有符号整数”,但没有指定它们是2个补码还是1个补码。

如果使用1补码,则所有2^32值都出现在长度为4的循环中-不需要零的特殊情况,也不需要条件。

在C中:

int32_t f(int32_t x)
{
  return (((x & 0xFFFFU) << 16) | ((x & 0xFFFF0000U) >> 16)) ^ 0xFFFFU;
}

这项工作由

交换高位和低位16位块反转其中一个块

两次传递后,我们得到原始值的位逆。在一中补语表示等同于否定。

示例:

Pass |        x
-----+-------------------
   0 | 00000001      (+1)
   1 | 0001FFFF (+131071)
   2 | FFFFFFFE      (-1)
   3 | FFFE0000 (-131071)
   4 | 00000001      (+1)

Pass |        x
-----+-------------------
   0 | 00000000      (+0)
   1 | 0000FFFF  (+65535)
   2 | FFFFFFFF      (-0)
   3 | FFFF0000  (-65535)
   4 | 00000000      (+0)

怎么样

int f(int n)
{
    return -abs(n);
}

上述问题不要求函数只能接受32位整数,只要求给定的n是32位整数。

红宝石:

def f( n )
  return 0 unless n != 0 
  ( n == n.to_i ) ? 1.0 / n : -(n**-1).to_i
end
int func(int a)  
{   
    static int p = 0;  
    int ret = a;  

    if ( p ) ret *= -1;  
    p ^= 1;  

    return ret;  
}