我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
使用循环置换方法来实现这一点。
-b a b-a
a b-a-b
在微不足道的情况下f(0)返回0
对不起,我的电话回答很粗糙,28日后我将发布完整版本(现在正在检查…)简单地说,假设f(n)是一个循环排列,问题是如何构造它。
定义fk=f(f(f)f(…f(n))))(k fs)情况k=20.微不足道的情况f(0)返回01.分组,在情况k=2时,分组:{0} {1,2} {3,4} ... {n,n+1 |(n+1)%2=0}注意:我只使用Z+,因为结构不需要使用负数。2.构造排列:如果n%2=0,那么a=n-1 b=n如果n%2=1,则a=n b=n+1
这将产生相同的排列,因为n和f(n)在同一组中。
注意排列为P返回P(n)
对于k=2t,只做上面相同的事情,只做MOD k。对于k=2t-1,虽然该方法有效,但毫无意义,啊?(f(n)=-n正常)
其他回答
我可以想象,使用第31位作为虚(I)位将是一种支持一半总范围的方法。
int f(int n)
{
static long counter=0;
counter++;
if(counter%2==0)
return -n;
else
return n;
}
这是rossfabricant答案的C实现。注意,由于我始终使用32位整数,f(f(2147483647))==2147483648,而不是-2147483647。
int32_t f( int32_t n )
{
if( n == 0 ) return 0;
switch( n & 0x80000001 ) {
case 0x00000000:
return -1 * ( n - 1 );
case 0x00000001:
return n + 1;
case 0x80000000:
return -1 * ( n + 1 );
default:
return n - 1;
}
}
如果您将问题定义为允许f()接受并返回int64_t,则会涉及2147483647。当然,switch语句中使用的文字必须更改。
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}
这是一个C/C++解决方案,它不使用任何按位运算符,也不需要任何数学库,尽管这有点作弊。。。
double f(double n)
{
if (n == (double)(int)n)
return n + 0.5;
else
return -(n - 0.5);
}
这适用于所有32位整数,只有一个异常0x80000000(因为它的相反值不能存储在32位整数系统中)。f(f(n))==-n将始终为真,除非在这种情况下。
不过,我相信有一种更简单、更快的方法来实现它。这只是我第一个想到的。