我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
目标-C
这适用于除“-1”以外的所有数字。
如果要从使用int转换为使用NSInt,那么可以将-1值设置为NULL,然后第二次将它们转换为+1,但我觉得NSInt欺骗了询问者的意图。
f(n):
-(int)f:(int)n {
if (abs(n)==1) {
n = -1;
} else {
if (abs(n)%2) {//o
if (n>0) {//+
n--;
n*=+1;
} else if (n<0) {//-
n++;
n*=+1;
}
} else {//e
if (n>0) {//+
n++;
n*=-1;
} else if (n<0) {//-
n--;
n*=-1;
}
}
}
return n;
}
当然,这一切都可以缩短为一行,但其他人可能无法阅读。。。
无论如何,我将BOOLEAN逻辑存储为奇数或偶数的状态。
其他回答
我还没有看其他答案,我假设已经彻底讨论了按位技术。
我想我会在C++中想出一些邪恶的东西,希望不会上当受骗:
struct ImplicitlyConvertibleToInt
{
operator int () const { return 0; }
};
int f(const ImplicitlyConvertibleToInt &) { return 0; }
ImplicitlyConvertibleToInt f(int & n)
{
n = 0; // The problem specification didn't say n was const
return ImplicitlyConvertibleToInt();
}
整个ImplicitlyConvertableToInt类型和重载是必需的,因为临时变量不能绑定到非常量引用。
当然,现在来看它,f(n)是否在-n之前执行是不确定的。
对于这种程度的邪恶,也许一个更好的解决方案是:
struct ComparesTrueToInt
{
ComparesTrueToInt(int) { } // implicit construction from int
};
bool operator == (ComparesTrueToInt, int) const { return true; }
ComparesTrueToInt f(ComparesTrueToInt ct) { return ComparesTrueToInt(); }
F#
let f n =
match n with
| n when n % 2 = 0 -> -n + System.Math.Sign n
| _ -> n - System.Math.Sign -n
其中n使得System.Int32.MinValue<n<System.Int32.MaxValue。
int f(int n) { static int x = 0; result = -x; x = n; return result; }
这是一个带有否定的单条目FIFO。当然,它不适用于最大负数。
f(x)=在二维笛卡尔坐标系中围绕原点逆时针旋转90度的点(x)。仅一个数字x的输入被假定为(x,0),并且具有y=0的输出被提供为单个数字x。
object f: (object) x {
if (x.length == 1)
x = (x, 0)
swap = x[0]
x[1] = x[0]
x[0] = -swap
if (x[1] == 0)
x = x[0]
return x
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}