我想设计一个程序,可以帮助我在5种预定义的颜色中评估哪一种更类似于可变颜色,以及与可变颜色的百分比。问题是我不知道如何手动一步一步地做到这一点。所以想一个程序就更难了。

更多细节:颜色来自不同颜色的管子和凝胶的照片。我有5个不同颜色的管子,每个代表5个等级中的1个。我想拍摄其他样本的照片,然后在电脑上通过比较颜色来评估样本属于哪个级别,我也想知道一个近似的百分比。我想要一个这样做的程序:http://www.colortools.net/color_matcher.html

如果你能告诉我该采取什么步骤,即使它们需要我手动思考和执行。那会很有帮助的。


当前回答

比较颜色的唯一“正确”方法是在CIELab或CIELuv中使用delta。

但对于很多应用,我认为这是一个足够好的近似:

子弹会= 3 * | diana | + 4个数2 + 3 * * |人物dG |专题| dB专题|

我认为在比较颜色时,加权曼哈顿距离更有意义。记住,颜色原色只存在于我们的大脑中。它们没有任何物理意义。CIELab和CIELuv是根据我们对颜色的感知建立的统计模型。

其他回答

您需要将任何RGB颜色转换为Lab颜色空间,以便能够以人类看到它们的方式进行比较。否则你会得到RGB颜色“匹配”在一些非常奇怪的方式。

关于颜色差异的维基百科链接向您介绍了多年来定义的各种Lab颜色空间差异算法。最简单的方法是检查两种实验室颜色的欧几里得距离,可以工作,但有一些缺陷。

在OpenIMAJ项目中有一个更复杂的CIEDE2000算法的Java实现。提供你的两组Lab颜色,它会给你一个距离值。

一个只使用RGB的简单方法是

cR=R1-R2 
cG=G1-G2 
cB=B1-B2 
uR=R1+R2 
distance=cR*cR*(2+uR/256) + cG*cG*4 + cB*cB*(2+(255-uR)/256)

我已经使用这个工具有一段时间了,它可以很好地用于大多数目的。

Actually I walked the same path a couple of months ago. There is no perfect answer to the question (that was asked here a couple of times) but there is one, more sophisticated than the sqrt(r-r) etc. answer and more easy to implement directly with RGB without moving to all kinds of alternate color spaces. I found this formula here which is a low cost approximation of the quite complicated real formula (by the CIE which is the W3C of colors, since this is a not finished quest, you can find older and simpler color difference equations there). Good Luck.

编辑:为了子孙后代,这里是相关的C代码:

typedef struct {
     unsigned char r, g, b;
} RGB;

double ColourDistance(RGB e1, RGB e2)
{
    long rmean = ( (long)e1.r + (long)e2.r ) / 2;
    long r = (long)e1.r - (long)e2.r;
    long g = (long)e1.g - (long)e2.g;
    long b = (long)e1.b - (long)e2.b;
    return sqrt((((512+rmean)*r*r)>>8) + 4*g*g + (((767-rmean)*b*b)>>8));
}

快速回答

我找到这个帖子是因为我需要这个问题的Swift版本。由于还没有人给出答案,我的答案是:

extension UIColor {

    var rgba: (red: CGFloat, green: CGFloat, blue: CGFloat, alpha: CGFloat) {
        var red: CGFloat = 0
        var green: CGFloat = 0
        var blue: CGFloat = 0
        var alpha: CGFloat = 0
        getRed(&red, green: &green, blue: &blue, alpha: &alpha)

        return (red, green, blue, alpha)
    }

    func isSimilar(to colorB: UIColor) -> Bool {
        let rgbA = self.rgba
        let rgbB = colorB.rgba

        let diffRed = abs(CGFloat(rgbA.red) - CGFloat(rgbB.red))
        let diffGreen = abs(rgbA.green - rgbB.green)
        let diffBlue = abs(rgbA.blue - rgbB.blue)

        let pctRed = diffRed
        let pctGreen = diffGreen
        let pctBlue = diffBlue

        let pct = (pctRed + pctGreen + pctBlue) / 3 * 100

        return pct < 10 ? true : false
    }
}

用法:

let black: UIColor = UIColor.black
let white: UIColor = UIColor.white

let similar: Bool = black.isSimilar(to: white)

我设置小于10%的差异返回相似的颜色,但你可以自定义这自己。

比较颜色的唯一“正确”方法是在CIELab或CIELuv中使用delta。

但对于很多应用,我认为这是一个足够好的近似:

子弹会= 3 * | diana | + 4个数2 + 3 * * |人物dG |专题| dB专题|

我认为在比较颜色时,加权曼哈顿距离更有意义。记住,颜色原色只存在于我们的大脑中。它们没有任何物理意义。CIELab和CIELuv是根据我们对颜色的感知建立的统计模型。