我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

php版本 使用不除法的array_product函数。 如果我们将i的值临时设为1,那么数组product将完全满足我们的需要

<?php
function product($key, $arr)
{
    $arr[$key] = 1;
    return array_product($arr);
};
$arr = [1, 2, 3, 4, 5];
$newarr = array();


foreach ($arr as $key => $value) {

    $newarr[$key] = product($key, $arr);
}
print_r($newarr);

其他回答

O(n)时间的简洁解:

对于每个元素,计算在它之前出现的所有元素的乘积,并将其存储在数组“pre”中。 对于每个元素,计算该元素之后所有元素的乘积,并将其存储在数组“post”中 为元素i创建一个最终数组result, 结果[i] = pre[i-1]*post[i+1];

给你,简单干净的解决方案,复杂度为O(N):

int[] a = {1,2,3,4,5};
    int[] r = new int[a.length];
    int x = 1;
    r[0] = 1;
    for (int i=1;i<a.length;i++){
        r[i]=r[i-1]*a[i-1];
    }
    for (int i=a.length-1;i>0;i--){
        x=x*a[i];
        r[i-1]=x*r[i-1];
    }
    for (int i=0;i<r.length;i++){
        System.out.println(r[i]);
    }

最近有人问我这个问题,虽然我不能得到O(N),但我有一个不同的方法(不幸的是O(N²)),但我想无论如何都要分享。

首先转换为列表<Integer>。

遍历原始数组array.length()次。

使用while循环乘下一组所需的数字:

while (temp < list.size() - 1) {
    res *= list.get(temp);
    temp++;
}

然后将res添加到一个新数组(当然,您已经在前面声明了),然后将数组[i]的值添加到List,依此类推。

我知道这不会有太大的用处,但这是我在面试的压力下想到的:)

    int[] array = new int[]{1, 2, 3, 4, 5};
    List<Integer> list = Arrays.stream(array).boxed().collect(Collectors.toList());
    int[] newarray = new int[array.length];
    int res = 1;
    for (int i = 0; i < array.length; i++) {
        int temp = i;
        while (temp < list.size() - 1) {
            res *= list.get(temp);
            temp++;
        }
        newarray[i] = res;
        list.add(array[i]);
        res = 1;
    }

输出:[24,120,60,40,30]

多基因润滑剂方法的一个解释是:

诀窍是构造数组(在4个元素的情况下):

{              1,         a[0],    a[0]*a[1],    a[0]*a[1]*a[2],  }
{ a[1]*a[2]*a[3],    a[2]*a[3],         a[3],                 1,  }

这两种方法都可以在O(n)中分别从左右边开始。

然后,将两个数组逐个元素相乘,得到所需的结果。

我的代码看起来是这样的:

int a[N] // This is the input
int products_below[N];
int p = 1;
for (int i = 0; i < N; ++i) {
    products_below[i] = p;
    p *= a[i];
}

int products_above[N];
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products_above[i] = p;
    p *= a[i];
}

int products[N]; // This is the result
for (int i = 0; i < N; ++i) {
    products[i] = products_below[i] * products_above[i];
}

如果你也需要空间中的解是O(1),你可以这样做(在我看来不太清楚):

int a[N] // This is the input
int products[N];

// Get the products below the current index
int p = 1;
for (int i = 0; i < N; ++i) {
    products[i] = p;
    p *= a[i];
}

// Get the products above the current index
p = 1;
for (int i = N - 1; i >= 0; --i) {
    products[i] *= p;
    p *= a[i];
}
import java.util.Arrays;

public class Pratik
{
    public static void main(String[] args)
    {
        int[] array = {2, 3, 4, 5, 6};      //  OUTPUT: 360  240  180  144  120
        int[] products = new int[array.length];
        arrayProduct(array, products);
        System.out.println(Arrays.toString(products));
    }

    public static void arrayProduct(int array[], int products[])
    {
        double sum = 0, EPSILON = 1e-9;

        for(int i = 0; i < array.length; i++)
            sum += Math.log(array[i]);

        for(int i = 0; i < array.length; i++)
            products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
    }
}

输出:

[360, 240, 180, 144, 120]

时间复杂度:O(n) 空间复杂度:O(1)