受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
在python中:
import numpy as np
a = np.array(
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 0, 1, 2],
[3, 4, 5, 6]
]
)
print(a)
print(b[::-1, :].T)
其他回答
下面是Java版本:
public static void rightRotate(int[][] matrix, int n) {
for (int layer = 0; layer < n / 2; layer++) {
int first = layer;
int last = n - 1 - first;
for (int i = first; i < last; i++) {
int offset = i - first;
int temp = matrix[first][i];
matrix[first][i] = matrix[last-offset][first];
matrix[last-offset][first] = matrix[last][last-offset];
matrix[last][last-offset] = matrix[i][last];
matrix[i][last] = temp;
}
}
}
该方法首先旋转最外层,然后按顺序移动到内层。
PHP:
array_unshift($array, null);
$array = call_user_func_array("array_map", $array);
如果你需要旋转矩形二维阵列90度,在上面的代码之前或之后添加以下一行(取决于你需要的旋转方向):
$array = array_reverse($array);
这是我对矩阵90度旋转的尝试,这是c中的2步解决方案,首先转置矩阵,然后交换cols。
#define ROWS 5
#define COLS 5
void print_matrix_b(int B[][COLS], int rows, int cols)
{
for (int i = 0; i <= rows; i++) {
for (int j = 0; j <=cols; j++) {
printf("%d ", B[i][j]);
}
printf("\n");
}
}
void swap_columns(int B[][COLS], int l, int r, int rows)
{
int tmp;
for (int i = 0; i <= rows; i++) {
tmp = B[i][l];
B[i][l] = B[i][r];
B[i][r] = tmp;
}
}
void matrix_2d_rotation(int B[][COLS], int rows, int cols)
{
int tmp;
// Transpose the matrix first
for (int i = 0; i <= rows; i++) {
for (int j = i; j <=cols; j++) {
tmp = B[i][j];
B[i][j] = B[j][i];
B[j][i] = tmp;
}
}
// Swap the first and last col and continue until
// the middle.
for (int i = 0; i < (cols / 2); i++)
swap_columns(B, i, cols - i, rows);
}
int _tmain(int argc, _TCHAR* argv[])
{
int B[ROWS][COLS] = {
{1, 2, 3, 4, 5},
{6, 7, 8, 9, 10},
{11, 12, 13, 14, 15},
{16, 17, 18, 19, 20},
{21, 22, 23, 24, 25}
};
matrix_2d_rotation(B, ROWS - 1, COLS - 1);
print_matrix_b(B, ROWS - 1, COLS -1);
return 0;
}
我只用一个循环就能做到。时间复杂度看起来像O(K)其中K是数组中的所有元素。 下面是我用JavaScript做的:
首先,我们用一个数组来表示n^2矩阵。然后,像这样迭代它:
/**
* Rotates matrix 90 degrees clockwise
* @param arr: the source array
* @param n: the array side (array is square n^2)
*/
function rotate (arr, n) {
var rotated = [], indexes = []
for (var i = 0; i < arr.length; i++) {
if (i < n)
indexes[i] = i * n + (n - 1)
else
indexes[i] = indexes[i - n] - 1
rotated[indexes[i]] = arr[i]
}
return rotated
}
基本上,我们转换源数组下标:
[0,1,2,3,4,5,6,7,8] => [2,5,8,1,4,7,0,3 6]
然后,使用这个转换后的索引数组,我们将实际值放在最终旋转的数组中。
下面是一些测试用例:
//n=3
rotate([
1, 2, 3,
4, 5, 6,
7, 8, 9], 3))
//result:
[7, 4, 1,
8, 5, 2,
9, 6, 3]
//n=4
rotate([
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16], 4))
//result:
[13, 9, 5, 1,
14, 10, 6, 2,
15, 11, 7, 3,
16, 12, 8, 4]
//n=5
rotate([
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15,
16, 17, 18, 19, 20,
21, 22, 23, 24, 25], 5))
//result:
[21, 16, 11, 6, 1,
22, 17, 12, 7, 2,
23, 18, 13, 8, 3,
24, 19, 14, 9, 4,
25, 20, 15, 10, 5]
在Eigen (c++)中:
Eigen::Matrix2d mat;
mat << 1, 2,
3, 4;
std::cout << mat << "\n\n";
Eigen::Matrix2d r_plus_90 = mat.transpose().rowwise().reverse();
std::cout << r_plus_90 << "\n\n";
Eigen::Matrix2d r_minus_90 = mat.transpose().colwise().reverse();
std::cout << r_minus_90 << "\n\n";
Eigen::Matrix2d r_180 = mat.colwise().reverse().rowwise().reverse(); // +180 same as -180
std::cout << r_180 << "\n\n";
输出:
1 2
3 4
3 1
4 2
2 4
1 3
4 3
2 1