我需要在c++中加载和使用CSV文件数据。在这一点上,它实际上只是一个以逗号分隔的解析器(即不用担心转义新行和逗号)。主要需要的是逐行解析器,它将在每次调用方法时为下一行返回一个向量。

我发现这篇文章看起来很有前途: http://www.boost.org/doc/libs/1_35_0/libs/spirit/example/fundamental/list_parser.cpp

我从未使用过Boost's Spirit,但我愿意尝试一下。但前提是我忽略了一个更直接的解决方案。


当前回答

我写了一个很好的解析CSV文件的方法,我认为我应该把它作为一个答案:

#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdlib.h>
#include <stdio.h>

struct CSVDict
{
  std::vector< std::string > inputImages;
  std::vector< double > inputLabels;
};

/**
\brief Splits the string

\param str String to split
\param delim Delimiter on the basis of which splitting is to be done
\return results Output in the form of vector of strings
*/
std::vector<std::string> stringSplit( const std::string &str, const std::string &delim )
{
  std::vector<std::string> results;

  for (size_t i = 0; i < str.length(); i++)
  {
    std::string tempString = "";
    while ((str[i] != *delim.c_str()) && (i < str.length()))
    {
      tempString += str[i];
      i++;
    }
    results.push_back(tempString);
  }

  return results;
}

/**
\brief Parse the supplied CSV File and obtain Row and Column information. 

Assumptions:
1. Header information is in first row
2. Delimiters are only used to differentiate cell members

\param csvFileName The full path of the file to parse
\param inputColumns The string of input columns which contain the data to be used for further processing
\param inputLabels The string of input labels based on which further processing is to be done
\param delim The delimiters used in inputColumns and inputLabels
\return Vector of Vector of strings: Collection of rows and columns
*/
std::vector< CSVDict > parseCSVFile( const std::string &csvFileName, const std::string &inputColumns, const std::string &inputLabels, const std::string &delim )
{
  std::vector< CSVDict > return_CSVDict;
  std::vector< std::string > inputColumnsVec = stringSplit(inputColumns, delim), inputLabelsVec = stringSplit(inputLabels, delim);
  std::vector< std::vector< std::string > > returnVector;
  std::ifstream inFile(csvFileName.c_str());
  int row = 0;
  std::vector< size_t > inputColumnIndeces, inputLabelIndeces;
  for (std::string line; std::getline(inFile, line, '\n');)
  {
    CSVDict tempDict;
    std::vector< std::string > rowVec;
    line.erase(std::remove(line.begin(), line.end(), '"'), line.end());
    rowVec = stringSplit(line, delim);

    // for the first row, record the indeces of the inputColumns and inputLabels
    if (row == 0)
    {
      for (size_t i = 0; i < rowVec.size(); i++)
      {
        for (size_t j = 0; j < inputColumnsVec.size(); j++)
        {
          if (rowVec[i] == inputColumnsVec[j])
          {
            inputColumnIndeces.push_back(i);
          }
        }
        for (size_t j = 0; j < inputLabelsVec.size(); j++)
        {
          if (rowVec[i] == inputLabelsVec[j])
          {
            inputLabelIndeces.push_back(i);
          }
        }
      }
    }
    else
    {
      for (size_t i = 0; i < inputColumnIndeces.size(); i++)
      {
        tempDict.inputImages.push_back(rowVec[inputColumnIndeces[i]]);
      }
      for (size_t i = 0; i < inputLabelIndeces.size(); i++)
      {
        double test = std::atof(rowVec[inputLabelIndeces[i]].c_str());
        tempDict.inputLabels.push_back(std::atof(rowVec[inputLabelIndeces[i]].c_str()));
      }
      return_CSVDict.push_back(tempDict);
    }
    row++;
  }

  return return_CSVDict;
}

其他回答

使用Boost Tokenizer的解决方案:

std::vector<std::string> vec;
using namespace boost;
tokenizer<escaped_list_separator<char> > tk(
   line, escaped_list_separator<char>('\\', ',', '\"'));
for (tokenizer<escaped_list_separator<char> >::iterator i(tk.begin());
   i!=tk.end();++i) 
{
   vec.push_back(*i);
}

使用Spirit来解析csv并不过分。Spirit非常适合微解析任务。例如,使用Spirit 2.1,它就像:

bool r = phrase_parse(first, last,

    //  Begin grammar
    (
        double_ % ','
    )
    ,
    //  End grammar

    space, v);

向量v被值填满了。在刚刚与Boost 1.41一起发布的新的Spirit 2.1文档中,有一系列教程涉及到这一点。

本教程从简单到复杂。CSV解析器呈现在中间的某个位置,并涉及使用Spirit的各种技术。生成的代码与手写代码一样紧凑。检查生成的汇编程序!

你可以在escaped_list_separator中使用Boost Tokenizer。

Escaped_list_separator解析csv的超集。Boost::记号赋予器

这只使用Boost标记器头文件,不需要链接到Boost库。

下面是一个例子,(详情请参阅c++中使用Boost Tokenizer解析CSV文件或Boost:: Tokenizer):

#include <iostream>     // cout, endl
#include <fstream>      // fstream
#include <vector>
#include <string>
#include <algorithm>    // copy
#include <iterator>     // ostream_operator
#include <boost/tokenizer.hpp>

int main()
{
    using namespace std;
    using namespace boost;
    string data("data.csv");

    ifstream in(data.c_str());
    if (!in.is_open()) return 1;

    typedef tokenizer< escaped_list_separator<char> > Tokenizer;
    vector< string > vec;
    string line;

    while (getline(in,line))
    {
        Tokenizer tok(line);
        vec.assign(tok.begin(),tok.end());

        // vector now contains strings from one row, output to cout here
        copy(vec.begin(), vec.end(), ostream_iterator<string>(cout, "|"));

        cout << "\n----------------------" << endl;
    }
}

如果您所需要的只是加载一个双精度数据文件(没有整数,没有文本),那么这里有一个随时可用的函数。

#include <sstream>
#include <fstream>
#include <iterator>
#include <string>
#include <vector>
#include <algorithm>

using namespace std;

/**
 * Parse a CSV data file and fill the 2d STL vector "data".
 * Limits: only "pure datas" of doubles, not encapsulated by " and without \n inside.
 * Further no formatting in the data (e.g. scientific notation)
 * It however handles both dots and commas as decimal separators and removes thousand separator.
 * 
 * returnCodes[0]: file access 0-> ok 1-> not able to read; 2-> decimal separator equal to comma separator
 * returnCodes[1]: number of records
 * returnCodes[2]: number of fields. -1 If rows have different field size
 * 
 */
vector<int>
readCsvData (vector <vector <double>>& data, const string& filename, const string& delimiter, const string& decseparator){

 int vv[3] = { 0,0,0 };
 vector<int> returnCodes(&vv[0], &vv[0]+3);

 string rowstring, stringtoken;
 double doubletoken;
 int rowcount=0;
 int fieldcount=0;
 data.clear();

 ifstream iFile(filename, ios_base::in);
 if (!iFile.is_open()){
   returnCodes[0] = 1;
   return returnCodes;
 }
 while (getline(iFile, rowstring)) {
    if (rowstring=="") continue; // empty line
    rowcount ++; //let's start with 1
    if(delimiter == decseparator){
      returnCodes[0] = 2;
      return returnCodes;
    }
    if(decseparator != "."){
     // remove dots (used as thousand separators)
     string::iterator end_pos = remove(rowstring.begin(), rowstring.end(), '.');
     rowstring.erase(end_pos, rowstring.end());
     // replace decimal separator with dots.
     replace(rowstring.begin(), rowstring.end(),decseparator.c_str()[0], '.'); 
    } else {
     // remove commas (used as thousand separators)
     string::iterator end_pos = remove(rowstring.begin(), rowstring.end(), ',');
     rowstring.erase(end_pos, rowstring.end());
    }
    // tokenize..
    vector<double> tokens;
    // Skip delimiters at beginning.
    string::size_type lastPos = rowstring.find_first_not_of(delimiter, 0);
    // Find first "non-delimiter".
    string::size_type pos     = rowstring.find_first_of(delimiter, lastPos);
    while (string::npos != pos || string::npos != lastPos){
        // Found a token, convert it to double add it to the vector.
        stringtoken = rowstring.substr(lastPos, pos - lastPos);
        if (stringtoken == "") {
      tokens.push_back(0.0);
    } else {
          istringstream totalSString(stringtoken);
      totalSString >> doubletoken;
      tokens.push_back(doubletoken);
    }     
        // Skip delimiters.  Note the "not_of"
        lastPos = rowstring.find_first_not_of(delimiter, pos);
        // Find next "non-delimiter"
        pos = rowstring.find_first_of(delimiter, lastPos);
    }
    if(rowcount == 1){
      fieldcount = tokens.size();
      returnCodes[2] = tokens.size();
    } else {
      if ( tokens.size() != fieldcount){
    returnCodes[2] = -1;
      }
    }
    data.push_back(tokens);
 }
 iFile.close();
 returnCodes[1] = rowcount;
 return returnCodes;
}

我需要一个易于使用的c++库来解析CSV文件,但找不到任何可用的库,所以我最终构建了一个。 Rapidcsv是一个c++ 11的纯头库,它可以直接访问已解析的列(或行),作为选择的数据类型的向量。例如:

#include <iostream>
#include <vector>
#include <rapidcsv.h>

int main()
{
  rapidcsv::Document doc("../tests/msft.csv");

  std::vector<float> close = doc.GetColumn<float>("Close");
  std::cout << "Read " << close.size() << " values." << std::endl;
}