如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

精确计算中长点之间距离所需的函数是复杂的,陷阱也很多。我不推荐哈弗辛或其他球形的解决方案,因为有很大的不准确性(地球不是一个完美的球体)。vincenty公式更好,但在某些情况下会抛出错误,即使编码正确。

与其自己编写函数,我建议使用geopy,它已经实现了非常精确的地理库来进行距离计算(论文来自作者)。

#pip install geopy
from geopy.distance import geodesic
NY = [40.71278,-74.00594]
Beijing = [39.90421,116.40739]
print("WGS84: ",geodesic(NY, Beijing).km) #WGS84 is Standard
print("Intl24: ",geodesic(NY, Beijing, ellipsoid='Intl 1924').km) #geopy includes different ellipsoids
print("Custom ellipsoid: ",geodesic(NY, Beijing, ellipsoid=(6377., 6356., 1 / 297.)).km) #custom ellipsoid

#supported ellipsoids:
#model             major (km)   minor (km)     flattening
#'WGS-84':        (6378.137,    6356.7523142,  1 / 298.257223563)
#'GRS-80':        (6378.137,    6356.7523141,  1 / 298.257222101)
#'Airy (1830)':   (6377.563396, 6356.256909,   1 / 299.3249646)
#'Intl 1924':     (6378.388,    6356.911946,   1 / 297.0)
#'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465)
#'GRS-67':        (6378.1600,   6356.774719,   1 / 298.25)

这个库的唯一缺点是它不支持向量化计算。 对于向量化计算,您可以使用新的gevectorslib。

#pip install geovectorslib
from geovectorslib import inverse
print(inverse(lats1,lons1,lats2,lons2)['s12'])

lat和lon是numpy数组。Geovectorslib是非常准确和非常快!我还没有找到改变椭球的方法。标准采用WGS84椭球,是大多数用途的最佳选择。

其他回答

这是一个简单的javascript函数,从这个链接可能是有用的。不知何故相关,但我们使用谷歌地球javascript插件而不是地图

function getApproximateDistanceUnits(point1, point2) {

    var xs = 0;
    var ys = 0;

    xs = point2.getX() - point1.getX();
    xs = xs * xs;

    ys = point2.getY() - point1.getY();
    ys = ys * ys;

    return Math.sqrt(xs + ys);
}

单位不是距离,而是相对于坐标的比率。还有其他相关的计算,你可以在这里代替getApproximateDistanceUnits函数链接

然后我使用这个函数来查看经纬度是否在半径内

function isMapPlacemarkInRadius(point1, point2, radi) {
    if (point1 && point2) {
        return getApproximateDistanceUnits(point1, point2) <= radi;
    } else {
        return 0;
    }
}

点可以定义为

 $$.getPoint = function(lati, longi) {
        var location = {
            x: 0,
            y: 0,
            getX: function() { return location.x; },
            getY: function() { return location.y; }
        };
        location.x = lati;
        location.y = longi;

        return location;
    };

然后你可以做你的事情,看看一个点是否在一个半径范围内,比如:

 //put it on the map if within the range of a specified radi assuming 100,000,000 units
        var iconpoint = Map.getPoint(pp.latitude, pp.longitude);
        var centerpoint = Map.getPoint(Settings.CenterLatitude, Settings.CenterLongitude);

        //approx ~200 units to show only half of the globe from the default center radius
        if (isMapPlacemarkInRadius(centerpoint, iconpoint, 120)) {
            addPlacemark(pp.latitude, pp.longitude, pp.name);
        }
        else {
            otherSidePlacemarks.push({
                latitude: pp.latitude,
                longitude: pp.longitude,
                name: pp.name
            });

        }

我通过简化公式来简化计算。

下面是Ruby版本:

include Math
earth_radius_mi = 3959
radians = lambda { |deg| deg * PI / 180 }
coord_radians = lambda { |c| { :lat => radians[c[:lat]], :lng => radians[c[:lng]] } }

# from/to = { :lat => (latitude_in_degrees), :lng => (longitude_in_degrees) }
def haversine_distance(from, to)
  from, to = coord_radians[from], coord_radians[to]
  cosines_product = cos(to[:lat]) * cos(from[:lat]) * cos(from[:lng] - to[:lng])
  sines_product = sin(to[:lat]) * sin(from[:lat])
  return earth_radius_mi * acos(cosines_product + sines_product)
end

如果你想要驾驶距离/路线(张贴在这里,因为这是谷歌上两点之间距离的第一个结果,但对大多数人来说,驾驶距离更有用),你可以使用谷歌地图距离矩阵服务:

getDrivingDistanceBetweenTwoLatLong(origin, destination) {

 return new Observable(subscriber => {
  let service = new google.maps.DistanceMatrixService();
  service.getDistanceMatrix(
    {
      origins: [new google.maps.LatLng(origin.lat, origin.long)],
      destinations: [new google.maps.LatLng(destination.lat, destination.long)],
      travelMode: 'DRIVING'
    }, (response, status) => {
      if (status !== google.maps.DistanceMatrixStatus.OK) {
        console.log('Error:', status);
        subscriber.error({error: status, status: status});
      } else {
        console.log(response);
        try {
          let valueInMeters = response.rows[0].elements[0].distance.value;
          let valueInKms = valueInMeters / 1000;
          subscriber.next(valueInKms);
          subscriber.complete();
        }
       catch(error) {
        subscriber.error({error: error, status: status});
       }
      }
    });
});
}

在其他答案中,r中的实现是缺失的。

用地质圈包中的distm函数计算两点之间的距离非常简单:

distm(p1, p2, fun = distHaversine)

地点:

p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid 

由于地球不是完美的球形,所以椭球体的文森提公式可能是计算距离的最佳方法。因此,在地质圈包中,您可以使用:

distm(p1, p2, fun = distVincentyEllipsoid)

当然,你不一定要使用geosphere包,你也可以用一个函数来计算以R为基底的距离:

hav.dist <- function(long1, lat1, long2, lat2) {
  R <- 6371
  diff.long <- (long2 - long1)
  diff.lat <- (lat2 - lat1)
  a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
  b <- 2 * asin(pmin(1, sqrt(a))) 
  d = R * b
  return(d)
}

哈弗辛公式在大多数情况下都是很好的公式,其他答案已经包含了它所以我就不占用空间了。但重要的是要注意,无论使用什么公式(是的,不仅仅是一个)。因为可能的精度范围很大,以及所需的计算时间。公式的选择需要更多的思考,而不是简单的无脑答案。

这个帖子来自nasa的一个人,是我在讨论这些选项时发现的最好的一个

http://www.cs.nyu.edu/visual/home/proj/tiger/gisfaq.html

例如,如果您只是在100英里半径内按距离对行进行排序。地平公式比哈弗辛公式快得多。

HalfPi = 1.5707963;
R = 3956; /* the radius gives you the measurement unit*/

a = HalfPi - latoriginrad;
b = HalfPi - latdestrad;
u = a * a + b * b;
v = - 2 * a * b * cos(longdestrad - longoriginrad);
c = sqrt(abs(u + v));
return R * c;

注意这里只有一个余弦和一个平方根。在哈弗辛公式中有9个。