如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

我已经创建了这个小Javascript LatLng对象,可能对某人有用。

var latLng1 = new LatLng(5, 3);
var latLng2 = new LatLng(6, 7);
var distance = latLng1.distanceTo(latLng2); 

代码:

/**
 * latLng point
 * @param {Number} lat
 * @param {Number} lng
 * @returns {LatLng}
 * @constructor
 */
function LatLng(lat,lng) {
    this.lat = parseFloat(lat);
    this.lng = parseFloat(lng);

    this.__cache = {};
}

LatLng.prototype = {
    toString: function() {
        return [this.lat, this.lng].join(",");
    },

    /**
     * calculate distance in km to another latLng, with caching
     * @param {LatLng} latLng
     * @returns {Number} distance in km
     */
    distanceTo: function(latLng) {
        var cacheKey = latLng.toString();
        if(cacheKey in this.__cache) {
            return this.__cache[cacheKey];
        }

        // the fastest way to calculate the distance, according to this jsperf test;
        // http://jsperf.com/haversine-salvador/8
        // http://stackoverflow.com/questions/27928
        var deg2rad = 0.017453292519943295; // === Math.PI / 180
        var lat1 = this.lat * deg2rad;
        var lng1 = this.lng * deg2rad;
        var lat2 = latLng.lat * deg2rad;
        var lng2 = latLng.lng * deg2rad;
        var a = (
            (1 - Math.cos(lat2 - lat1)) +
            (1 - Math.cos(lng2 - lng1)) * Math.cos(lat1) * Math.cos(lat2)
            ) / 2;
        var distance = 12742 * Math.asin(Math.sqrt(a)); // Diameter of the earth in km (2 * 6371)

        // cache the distance
        this.__cache[cacheKey] = distance;

        return distance;
    }
};

其他回答

可能有一个更简单、更正确的解决方案:地球的周长在赤道上是40000公里,在格林威治(或任何经度)周期上约为37000公里。因此:

pythagoras = function (lat1, lon1, lat2, lon2) {
   function sqr(x) {return x * x;}
   function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}

   var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
   var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
   var dy = 37000000.0 * (lat1 - lat2) / 360.0;

   return Math.sqrt(sqr(dx) + sqr(dy));
};

我同意它应该被微调,我自己说过它是一个椭球,所以半径乘以余弦值是不同的。但它更准确一点。与谷歌map相比,误差明显减小。

//JAVA
    public Double getDistanceBetweenTwoPoints(Double latitude1, Double longitude1, Double latitude2, Double longitude2) {
    final int RADIUS_EARTH = 6371;

    double dLat = getRad(latitude2 - latitude1);
    double dLong = getRad(longitude2 - longitude1);

    double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(getRad(latitude1)) * Math.cos(getRad(latitude2)) * Math.sin(dLong / 2) * Math.sin(dLong / 2);
    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    return (RADIUS_EARTH * c) * 1000;
    }

    private Double getRad(Double x) {
    return x * Math.PI / 180;
    }

下面是另一个转换为Ruby代码的代码:

include Math
#Note: from/to = [lat, long]

def get_distance_in_km(from, to)
  radians = lambda { |deg| deg * Math.PI / 180 }
  radius = 6371 # Radius of the earth in kilometer
  dLat = radians[to[0]-from[0]]
  dLon = radians[to[1]-from[1]]

  cosines_product = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(radians[from[0]]) * Math.cos(radians[to[1]]) * Math.sin(dLon/2) * Math.sin(dLon/2)

  c = 2 * Math.atan2(Math.sqrt(cosines_product), Math.sqrt(1-cosines_product)) 
  return radius * c # Distance in kilometer
end

下面是Haversine公式的typescript实现

static getDistanceFromLatLonInKm(lat1: number, lon1: number, lat2: number, lon2: number): number {
    var deg2Rad = deg => {
        return deg * Math.PI / 180;
    }

    var r = 6371; // Radius of the earth in km
    var dLat = deg2Rad(lat2 - lat1);   
    var dLon = deg2Rad(lon2 - lon1);
    var a =
        Math.sin(dLat / 2) * Math.sin(dLat / 2) +
        Math.cos(deg2Rad(lat1)) * Math.cos(deg2Rad(lat2)) *
        Math.sin(dLon / 2) * Math.sin(dLon / 2);
    var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    var d = r * c; // Distance in km
    return d;
}

这个脚本[在PHP中]计算两点之间的距离。

public static function getDistanceOfTwoPoints($source, $dest, $unit='K') {
        $lat1 = $source[0];
        $lon1 = $source[1];
        $lat2 = $dest[0];
        $lon2 = $dest[1];

        $theta = $lon1 - $lon2;
        $dist = sin(deg2rad($lat1)) * sin(deg2rad($lat2)) +  cos(deg2rad($lat1)) * cos(deg2rad($lat2)) * cos(deg2rad($theta));
        $dist = acos($dist);
        $dist = rad2deg($dist);
        $miles = $dist * 60 * 1.1515;
        $unit = strtoupper($unit);

        if ($unit == "K") {
            return ($miles * 1.609344);
        }
        else if ($unit == "M")
        {
            return ($miles * 1.609344 * 1000);
        }
        else if ($unit == "N") {
            return ($miles * 0.8684);
        } 
        else {
            return $miles;
        }
    }