如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
我已经创建了这个小Javascript LatLng对象,可能对某人有用。
var latLng1 = new LatLng(5, 3);
var latLng2 = new LatLng(6, 7);
var distance = latLng1.distanceTo(latLng2);
代码:
/**
* latLng point
* @param {Number} lat
* @param {Number} lng
* @returns {LatLng}
* @constructor
*/
function LatLng(lat,lng) {
this.lat = parseFloat(lat);
this.lng = parseFloat(lng);
this.__cache = {};
}
LatLng.prototype = {
toString: function() {
return [this.lat, this.lng].join(",");
},
/**
* calculate distance in km to another latLng, with caching
* @param {LatLng} latLng
* @returns {Number} distance in km
*/
distanceTo: function(latLng) {
var cacheKey = latLng.toString();
if(cacheKey in this.__cache) {
return this.__cache[cacheKey];
}
// the fastest way to calculate the distance, according to this jsperf test;
// http://jsperf.com/haversine-salvador/8
// http://stackoverflow.com/questions/27928
var deg2rad = 0.017453292519943295; // === Math.PI / 180
var lat1 = this.lat * deg2rad;
var lng1 = this.lng * deg2rad;
var lat2 = latLng.lat * deg2rad;
var lng2 = latLng.lng * deg2rad;
var a = (
(1 - Math.cos(lat2 - lat1)) +
(1 - Math.cos(lng2 - lng1)) * Math.cos(lat1) * Math.cos(lat2)
) / 2;
var distance = 12742 * Math.asin(Math.sqrt(a)); // Diameter of the earth in km (2 * 6371)
// cache the distance
this.__cache[cacheKey] = distance;
return distance;
}
};
其他回答
可能有一个更简单、更正确的解决方案:地球的周长在赤道上是40000公里,在格林威治(或任何经度)周期上约为37000公里。因此:
pythagoras = function (lat1, lon1, lat2, lon2) {
function sqr(x) {return x * x;}
function cosDeg(x) {return Math.cos(x * Math.PI / 180.0);}
var earthCyclePerimeter = 40000000.0 * cosDeg((lat1 + lat2) / 2.0);
var dx = (lon1 - lon2) * earthCyclePerimeter / 360.0;
var dy = 37000000.0 * (lat1 - lat2) / 360.0;
return Math.sqrt(sqr(dx) + sqr(dy));
};
我同意它应该被微调,我自己说过它是一个椭球,所以半径乘以余弦值是不同的。但它更准确一点。与谷歌map相比,误差明显减小。
下面是另一个转换为Ruby代码的代码:
include Math
#Note: from/to = [lat, long]
def get_distance_in_km(from, to)
radians = lambda { |deg| deg * Math.PI / 180 }
radius = 6371 # Radius of the earth in kilometer
dLat = radians[to[0]-from[0]]
dLon = radians[to[1]-from[1]]
cosines_product = Math.sin(dLat/2) * Math.sin(dLat/2) + Math.cos(radians[from[0]]) * Math.cos(radians[to[1]]) * Math.sin(dLon/2) * Math.sin(dLon/2)
c = 2 * Math.atan2(Math.sqrt(cosines_product), Math.sqrt(1-cosines_product))
return radius * c # Distance in kilometer
end
正如指出的那样,精确的计算应该考虑到地球不是一个完美的球体。以下是这里提供的各种算法的一些比较:
geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km
geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km
geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km
geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km
在小范围内,Keerthana的算法似乎与谷歌Maps的算法一致。谷歌Maps似乎没有遵循任何简单的算法,这表明它可能是这里最准确的方法。
不管怎样,这里是Keerthana算法的Javascript实现:
function geoDistance(lat1, lng1, lat2, lng2){
const a = 6378.137; // equitorial radius in km
const b = 6356.752; // polar radius in km
var sq = x => (x*x);
var sqr = x => Math.sqrt(x);
var cos = x => Math.cos(x);
var sin = x => Math.sin(x);
var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));
lat1 = lat1 * Math.PI / 180;
lng1 = lng1 * Math.PI / 180;
lat2 = lat2 * Math.PI / 180;
lng2 = lng2 * Math.PI / 180;
var R1 = radius(lat1);
var x1 = R1*cos(lat1)*cos(lng1);
var y1 = R1*cos(lat1)*sin(lng1);
var z1 = R1*sin(lat1);
var R2 = radius(lat2);
var x2 = R2*cos(lat2)*cos(lng2);
var y2 = R2*cos(lat2)*sin(lng2);
var z2 = R2*sin(lat2);
return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}
这个链接可能对你有帮助,因为它详细介绍了使用哈弗辛公式来计算距离。
摘录:
这个脚本计算两点之间的大圆距离 也就是说,在地球表面上的最短距离-使用 “半正矢”公式。
function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
var R = 6371; // Radius of the earth in km
var dLat = deg2rad(lat2-lat1); // deg2rad below
var dLon = deg2rad(lon2-lon1);
var a =
Math.sin(dLat/2) * Math.sin(dLat/2) +
Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) *
Math.sin(dLon/2) * Math.sin(dLon/2)
;
var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a));
var d = R * c; // Distance in km
return d;
}
function deg2rad(deg) {
return deg * (Math.PI/180)
}
下面是Haversine公式的java实现。
public final static double AVERAGE_RADIUS_OF_EARTH_KM = 6371;
public int calculateDistanceInKilometer(double userLat, double userLng,
double venueLat, double venueLng) {
double latDistance = Math.toRadians(userLat - venueLat);
double lngDistance = Math.toRadians(userLng - venueLng);
double a = Math.sin(latDistance / 2) * Math.sin(latDistance / 2)
+ Math.cos(Math.toRadians(userLat)) * Math.cos(Math.toRadians(venueLat))
* Math.sin(lngDistance / 2) * Math.sin(lngDistance / 2);
double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
return (int) (Math.round(AVERAGE_RADIUS_OF_EARTH_KM * c));
}
请注意,这里我们将答案四舍五入到最近的km。