NumPy提出了一种通过np.argmax获取数组最大值索引的方法。

我想要一个类似的东西,但返回N个最大值的索引。

例如,如果我有一个数组[1,3,2,4,5],那么nargmax(array, n=3)将返回对应于元素[5,4,3]的下标[4,3,1]。


当前回答

比较了编码的便捷性和速度

速度对我的需求很重要,所以我测试了这个问题的三个答案。

根据我的具体情况,对这三个答案中的代码进行了修改。

然后我比较了每种方法的速度。

编码智慧:

NPE的回答是最优雅的,也足够快地满足我的需求。 Fred foo的回答需要最多的重构来满足我的需求,但却是最快的。我选择了这个答案,因为尽管它需要更多的工作,但它并不太糟糕,并且具有显著的速度优势。 Off99555的回答是最优雅的,但也是最慢的。

测试和比较的完整代码

import numpy as np
import time
import random
import sys
from operator import itemgetter
from heapq import nlargest

''' Fake Data Setup '''
a1 = list(range(1000000))
random.shuffle(a1)
a1 = np.array(a1)

''' ################################################ '''
''' NPE's Answer Modified A Bit For My Case '''
t0 = time.time()
indices = np.flip(np.argsort(a1))[:5]
results = []
for index in indices:
    results.append((index, a1[index]))
t1 = time.time()
print("NPE's Answer:")
print(results)
print(t1 - t0)
print()

''' Fred Foos Answer Modified A Bit For My Case'''
t0 = time.time()
indices = np.argpartition(a1, -6)[-5:]
results = []
for index in indices:
    results.append((a1[index], index))
results.sort(reverse=True)
results = [(b, a) for a, b in results]
t1 = time.time()
print("Fred Foo's Answer:")
print(results)
print(t1 - t0)
print()

''' off99555's Answer - No Modification Needed For My Needs '''
t0 = time.time()
result = nlargest(5, enumerate(a1), itemgetter(1))
t1 = time.time()
print("off99555's Answer:")
print(result)
print(t1 - t0)

输出速度报告

肺水肿的回答是:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.1349949836730957

Fred Foo的回答:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.011161565780639648

off99555的回答是:

[(631934, 999999), (788104, 999998), (413003, 999997), (536514, 999996), (81029, 999995)]
0.439760684967041

其他回答

我发现最直观的方法是使用np.unique。

其思想是,唯一方法返回输入值的索引。然后根据最大唯一值和索引,重新创建原始值的位置。

multi_max = [1,1,2,2,4,0,0,4]
uniques, idx = np.unique(multi_max, return_inverse=True)
print np.squeeze(np.argwhere(idx == np.argmax(uniques)))
>> [4 7]

较新的NumPy版本(1.8及以上)有一个名为argpartition的函数。要得到四个最大元素的索引,请执行以下操作

>>> a = np.array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])
>>> a
array([9, 4, 4, 3, 3, 9, 0, 4, 6, 0])

>>> ind = np.argpartition(a, -4)[-4:]
>>> ind
array([1, 5, 8, 0])

>>> top4 = a[ind]
>>> top4
array([4, 9, 6, 9])

与argsort不同,这个函数在最坏的情况下以线性时间运行,但返回的索引没有排序,这可以从求值a[ind]的结果中看出。如果你也需要,那就把它们分类:

>>> ind[np.argsort(a[ind])]
array([1, 8, 5, 0])

以这种方式获得排在前k位的元素需要O(n + k log k)时间。

我能想到的最简单的是:

>>> import numpy as np
>>> arr = np.array([1, 3, 2, 4, 5])
>>> arr.argsort()[-3:][::-1]
array([4, 3, 1])

这涉及到一个完整的数组。我想知道numpy是否提供了一种内置的方法来进行部分排序;到目前为止我还没有找到。

如果这个解决方案太慢(特别是对于小n),那么可能值得考虑用Cython编写一些东西。

您可以简单地使用字典来查找numpy数组中的前k个值和下标。 例如,如果你想找到前2个最大值和索引

import numpy as np
nums = np.array([0.2, 0.3, 0.25, 0.15, 0.1])


def TopK(x, k):
    a = dict([(i, j) for i, j in enumerate(x)])
    sorted_a = dict(sorted(a.items(), key = lambda kv:kv[1], reverse=True))
    indices = list(sorted_a.keys())[:k]
    values = list(sorted_a.values())[:k]
    return (indices, values)

print(f"Indices: {TopK(nums, k = 2)[0]}")
print(f"Values: {TopK(nums, k = 2)[1]}")


Indices: [1, 2]
Values: [0.3, 0.25]

使用argpartition的向量化2D实现:

k = 3
probas = np.array([
    [.6, .1, .15, .15],
    [.1, .6, .15, .15],
    [.3, .1, .6, 0],
])

k_indices = np.argpartition(-probas, k-1, axis=-1)[:, :k]

# adjust indices to apply in flat array
adjuster = np.arange(probas.shape[0]) * probas.shape[1]
adjuster = np.broadcast_to(adjuster[:, None], k_indices.shape)
k_indices_flat = k_indices + adjuster

k_values = probas.flatten()[k_indices_flat]

# k_indices:
# array([[0, 2, 3],
#        [1, 2, 3],
#        [2, 0, 1]])
# k_values:
# array([[0.6 , 0.15, 0.15],
#        [0.6 , 0.15, 0.15],
#       [0.6 , 0.3 , 0.1 ]])