了解汇编程序的原因之一是,有时可以使用汇编程序来编写比用高级语言(特别是C语言)编写的代码性能更好的代码。然而,我也听人说过很多次,尽管这并非完全错误,但实际上可以使用汇编程序来生成性能更好的代码的情况极其罕见,并且需要汇编方面的专业知识和经验。

这个问题甚至没有涉及到这样一个事实,即汇编程序指令将是特定于机器的、不可移植的,或者汇编程序的任何其他方面。当然,除了这一点之外,了解汇编还有很多很好的理由,但这是一个需要示例和数据的具体问题,而不是关于汇编程序与高级语言的扩展论述。

谁能提供一些具体的例子,说明使用现代编译器汇编代码比编写良好的C代码更快,并且您能否用分析证据支持这一说法?我相信这些案例确实存在,但我真的很想知道这些案例到底有多深奥,因为这似乎是一个有争议的问题。


当前回答

我很惊讶居然没人这么说。如果用汇编编写strlen()函数,速度会快得多!在C中,你能做的最好的事情就是

int c;
for(c = 0; str[c] != '\0'; c++) {}

在组装过程中,你可以大大加快速度:

mov esi, offset string
mov edi, esi
xor ecx, ecx

lp:
mov ax, byte ptr [esi]
cmp al, cl
je  end_1
cmp ah, cl
je end_2
mov bx, byte ptr [esi + 2]
cmp bl, cl
je end_3
cmp bh, cl
je end_4
add esi, 4
jmp lp

end_4:
inc esi

end_3:
inc esi

end_2:
inc esi

end_1:
inc esi

mov ecx, esi
sub ecx, edi

长度单位是ecx。这一次比较4个字符,所以速度快4倍。并且考虑使用eax和ebx的高阶词,它将比之前的C例程快8倍!

其他回答

不需要给出任何具体的示例或分析器证据,当您比编译器知道的更多时,您可以编写比编译器更好的汇编程序。

In the general case, a modern C compiler knows much more about how to optimize the code in question: it knows how the processor pipeline works, it can try to reorder instructions quicker than a human can, and so on - it's basically the same as a computer being as good as or better than the best human player for boardgames, etc. simply because it can make searches within the problem space faster than most humans. Although you theoretically can perform as well as the computer in a specific case, you certainly can't do it at the same speed, making it infeasible for more than a few cases (i.e. the compiler will most certainly outperform you if you try to write more than a few routines in assembler).

另一方面,有些情况下编译器没有那么多的信息——我想说主要是在使用不同形式的外部硬件时,编译器不知道这些信息。主要的例子可能是设备驱动程序,其中汇编程序结合人类对相关硬件的熟悉知识可以产生比C编译器更好的结果。

其他人提到了特殊用途指令,这就是我在上面一段中所说的——编译器可能对这些指令了解有限或根本不了解,这使得人类可以编写更快的代码。

在历史上插话。

当我还年轻的时候(20世纪70年代),根据我的经验,汇编是很重要的,更重要的是代码的大小,而不是代码的速度。

如果一个高级语言的模块是1300字节的代码,但该模块的汇编版本是300字节,那么当您试图将应用程序装入16K或32K的内存时,这1K字节就非常重要。

那时候编译器还不是很好。

在老式的Fortran中

X = (Y - Z)
IF (X .LT. 0) THEN
 ... do something
ENDIF

当时的编译器在X上执行了一个SUBTRACT指令,然后是一个TEST指令。 在汇编程序中,您只需在减法之后检查条件代码(LT零,零,GT零)。

对于现代系统和编译器来说,这些都不是问题。

我认为理解编译器在做什么仍然很重要。 当您使用高级语言编写代码时,您应该了解什么允许或阻止编译器执行循环展开。

当编译器执行“类似分支”的操作时,使用管道内衬和包含条件的前瞻计算。

当执行高级语言不允许的事情时,仍然需要汇编程序,比如读取或写入处理器特定的寄存器。

但在很大程度上,普通程序员不再需要它,除非对代码如何编译和执行有基本的了解。

使用SIMD指令的矩阵操作可能比编译器生成的代码更快。

如果您没有查看编译器生成的内容的反汇编,您实际上无法知道编写良好的C代码是否真的很快。很多时候你会发现“写得好”是主观的。

因此,没有必要用汇编程序来获得最快的代码,但出于同样的原因,了解汇编程序当然是值得的。

以下是我个人经历中的几个例子:

Access to instructions that are not accessible from C. For instance, many architectures (like x86-64, IA-64, DEC Alpha, and 64-bit MIPS or PowerPC) support a 64 bit by 64 bit multiplication producing a 128 bit result. GCC recently added an extension providing access to such instructions, but before that assembly was required. And access to this instruction can make a huge difference on 64-bit CPUs when implementing something like RSA - sometimes as much as a factor of 4 improvement in performance. Access to CPU-specific flags. The one that has bitten me a lot is the carry flag; when doing a multiple-precision addition, if you don't have access to the CPU carry bit one must instead compare the result to see if it overflowed, which takes 3-5 more instructions per limb; and worse, which are quite serial in terms of data accesses, which kills performance on modern superscalar processors. When processing thousands of such integers in a row, being able to use addc is a huge win (there are superscalar issues with contention on the carry bit as well, but modern CPUs deal pretty well with it). SIMD. Even autovectorizing compilers can only do relatively simple cases, so if you want good SIMD performance it's unfortunately often necessary to write the code directly. Of course you can use intrinsics instead of assembly but once you're at the intrinsics level you're basically writing assembly anyway, just using the compiler as a register allocator and (nominally) instruction scheduler. (I tend to use intrinsics for SIMD simply because the compiler can generate the function prologues and whatnot for me so I can use the same code on Linux, OS X, and Windows without having to deal with ABI issues like function calling conventions, but other than that the SSE intrinsics really aren't very nice - the Altivec ones seem better though I don't have much experience with them). As examples of things a (current day) vectorizing compiler can't figure out, read about bitslicing AES or SIMD error correction - one could imagine a compiler that could analyze algorithms and generate such code, but it feels to me like such a smart compiler is at least 30 years away from existing (at best).

On the other hand, multicore machines and distributed systems have shifted many of the biggest performance wins in the other direction - get an extra 20% speedup writing your inner loops in assembly, or 300% by running them across multiple cores, or 10000% by running them across a cluster of machines. And of course high level optimizations (things like futures, memoization, etc) are often much easier to do in a higher level language like ML or Scala than C or asm, and often can provide a much bigger performance win. So, as always, there are tradeoffs to be made.