了解汇编程序的原因之一是,有时可以使用汇编程序来编写比用高级语言(特别是C语言)编写的代码性能更好的代码。然而,我也听人说过很多次,尽管这并非完全错误,但实际上可以使用汇编程序来生成性能更好的代码的情况极其罕见,并且需要汇编方面的专业知识和经验。

这个问题甚至没有涉及到这样一个事实,即汇编程序指令将是特定于机器的、不可移植的,或者汇编程序的任何其他方面。当然,除了这一点之外,了解汇编还有很多很好的理由,但这是一个需要示例和数据的具体问题,而不是关于汇编程序与高级语言的扩展论述。

谁能提供一些具体的例子,说明使用现代编译器汇编代码比编写良好的C代码更快,并且您能否用分析证据支持这一说法?我相信这些案例确实存在,但我真的很想知道这些案例到底有多深奥,因为这似乎是一个有争议的问题。


当前回答

在Amiga上,CPU和图形/音频芯片会为了访问特定区域的RAM(具体来说是前2MB的RAM)而争斗。因此,当你只有2MB RAM(或更少)时,显示复杂的图形加上播放声音会杀死CPU的性能。

在汇编程序中,你可以巧妙地交错你的代码,使CPU只在图形/音频芯片内部繁忙时(即当总线空闲时)才尝试访问RAM。因此,通过重新排序指令,巧妙地使用CPU缓存,总线定时,你可以实现一些使用任何高级语言都不可能实现的效果,因为你必须为每个命令定时,甚至在这里或那里插入nop,以使不同的芯片不受彼此的雷达影响。

这也是为什么CPU的NOP (No Operation -什么都不做)指令实际上可以让你的整个应用程序运行得更快的另一个原因。

当然,这种技术取决于特定的硬件设置。这就是为什么许多Amiga游戏无法适应更快的cpu的主要原因:指令的计时错误。

其他回答

Walter Bright的《optimization Immutable and Purity》可能值得一看,它不是一个概要测试,但向您展示了手写和编译器生成ASM之间的区别。Walter Bright写优化编译器,所以值得一看他的其他博客文章。

几乎任何时候编译器看到浮点代码,如果你使用的是旧的糟糕的编译器,手写的版本会更快。(2019年更新:对于现代编译器来说,这并不普遍。特别是在编译x87以外的东西时;编译器更容易使用SSE2或AVX进行标量数学运算,或任何具有平面FP寄存器集的非x86,不像x87的寄存器堆栈。)

主要原因是编译器不能执行任何健壮的优化。关于这个主题的讨论,请参阅来自MSDN的这篇文章。下面是一个例子,其中汇编版本的速度是C版本的两倍(用VS2K5编译):

#include "stdafx.h"
#include <windows.h>

float KahanSum(const float *data, int n)
{
   float sum = 0.0f, C = 0.0f, Y, T;

   for (int i = 0 ; i < n ; ++i) {
      Y = *data++ - C;
      T = sum + Y;
      C = T - sum - Y;
      sum = T;
   }

   return sum;
}

float AsmSum(const float *data, int n)
{
  float result = 0.0f;

  _asm
  {
    mov esi,data
    mov ecx,n
    fldz
    fldz
l1:
    fsubr [esi]
    add esi,4
    fld st(0)
    fadd st(0),st(2)
    fld st(0)
    fsub st(0),st(3)
    fsub st(0),st(2)
    fstp st(2)
    fstp st(2)
    loop l1
    fstp result
    fstp result
  }

  return result;
}

int main (int, char **)
{
  int count = 1000000;

  float *source = new float [count];

  for (int i = 0 ; i < count ; ++i) {
    source [i] = static_cast <float> (rand ()) / static_cast <float> (RAND_MAX);
  }

  LARGE_INTEGER start, mid, end;

  float sum1 = 0.0f, sum2 = 0.0f;

  QueryPerformanceCounter (&start);

  sum1 = KahanSum (source, count);

  QueryPerformanceCounter (&mid);

  sum2 = AsmSum (source, count);

  QueryPerformanceCounter (&end);

  cout << "  C code: " << sum1 << " in " << (mid.QuadPart - start.QuadPart) << endl;
  cout << "asm code: " << sum2 << " in " << (end.QuadPart - mid.QuadPart) << endl;

  return 0;
}

和一些数字从我的PC运行默认版本*:

  C code: 500137 in 103884668
asm code: 500137 in 52129147

出于兴趣,我用dec/jnz交换了循环,它对计时没有影响——有时更快,有时更慢。我想内存有限的方面使其他优化相形见绌。(编者注:更可能的情况是,FP延迟瓶颈足以隐藏循环的额外成本。对奇数/偶数元素并行进行两个Kahan求和,并在最后添加它们,可能会加快2倍的速度。)

哎呀,我正在运行一个稍微不同的代码版本,它输出的数字是错误的(即C更快!)修正并更新了结果。

这个问题有点毫无意义,因为无论如何c都是编译到汇编程序的。 但是,通过优化编译器生成的汇编程序几乎是完全优化的,所以除非你在优化特定的汇编程序方面做了20个博士学位,否则你无法打败编译器。

如果您没有查看编译器生成的内容的反汇编,您实际上无法知道编写良好的C代码是否真的很快。很多时候你会发现“写得好”是主观的。

因此,没有必要用汇编程序来获得最快的代码,但出于同样的原因,了解汇编程序当然是值得的。

只有在使用编译器不支持的特殊用途指令集时。

为了最大限度地利用具有多个管道和预测分支的现代CPU的计算能力,您需要以这样一种方式来构造汇编程序:a)人类几乎不可能编写b)甚至更不可能维护。

此外,更好的算法、数据结构和内存管理将为您提供至少一个数量级的性能,而不是在汇编中进行的微观优化。