我需要一个滚动窗口(又名滑动窗口)可迭代的序列/迭代器/生成器。(默认的Python迭代可以被认为是一种特殊情况,其中窗口长度为1。)我目前正在使用以下代码。我怎样才能做得更优雅和/或更有效?

def rolling_window(seq, window_size):
    it = iter(seq)
    win = [it.next() for cnt in xrange(window_size)] # First window
    yield win
    for e in it: # Subsequent windows
        win[:-1] = win[1:]
        win[-1] = e
        yield win

if __name__=="__main__":
    for w in rolling_window(xrange(6), 3):
        print w

"""Example output:   
   [0, 1, 2]
   [1, 2, 3]
   [2, 3, 4]
   [3, 4, 5]
"""

对于window_size == 2的特定情况(即,在序列中迭代相邻的重叠对),请参见如何从列表中迭代重叠(当前,下一个)值对?


当前回答

def GetShiftingWindows(thelist, size):
    return [ thelist[x:x+size] for x in range( len(thelist) - size + 1 ) ]

>> a = [1, 2, 3, 4, 5]
>> GetShiftingWindows(a, 3)
[ [1, 2, 3], [2, 3, 4], [3, 4, 5] ]

其他回答

>>> n, m = 6, 3
>>> k = n - m+1
>>> print ('{}\n'*(k)).format(*[range(i, i+m) for i in xrange(k)])
[0, 1, 2]
[1, 2, 3]
[2, 3, 4]
[3, 4, 5]

我的两个版本的窗口实现

from typing import Sized, Iterable

def window(seq: Sized, n: int, strid: int = 1, drop_last: bool = False):
    for i in range(0, len(seq), strid):
        res = seq[i:i + n]
        if drop_last and len(res) < n:
            break
        yield res


def window2(seq: Iterable, n: int, strid: int = 1, drop_last: bool = False):
    it = iter(seq)
    result = []
    step = 0
    for i, ele in enumerate(it):
        result.append(ele)
        result = result[-n:]
        if len(result) == n:
            if step % strid == 0:
                yield result
            step += 1
    if not drop_last:
        yield result

深度学习中滑动窗口数据的优化函数

def SlidingWindow(X, window_length, stride):
    indexer = np.arange(window_length)[None, :] + stride*np.arange(int(len(X)/stride)-window_length+4)[:, None]
    return X.take(indexer)

应用于多维数组

import numpy as np
def SlidingWindow(X, window_length, stride1):
    stride=  X.shape[1]*stride1
    window_length = window_length*X.shape[1]
    indexer = np.arange(window_length)[None, :] + stride1*np.arange(int(len(X)/stride1)-window_length-1)[:, None]
    return X.take(indexer)

更新

Kelly发现这是一个重复的答案。但我在这里留下这个作为反例,因为我包含了一个毫无意义的最小值。

所以如果你想用min来避免IndexError,没有必要,range会帮你处理这种情况。


旧的答案

奇怪的是,当n > len(l)返回[]时,下面的句柄在语义上是正确的。

>>> l = [0, 1, 2, 3, 4]

>>> n = 2
>>> [l[i: i + min(n, len(l)-i)] for i in range(len(l)-n+1)]
>>> [[0, 1], [1, 2], [2, 3], [3, 4]]
>>>
>>> n = 3
>>> [l[i: i + min(n, len(l)-i)] for i in range(len(l)-n+1)]
>>> [[0, 1, 2], [1, 2, 3], [2, 3, 4]]
>>>
>>> n = 4
>>> [l[i: i + min(n, len(l)-i)] for i in range(len(l)-n+1)]
>>> [[0, 1, 2, 3], [1, 2, 3, 4]]
>>>
>>> n = 5
>>> [l[i: i + min(n, len(l)-i)] for i in range(len(l)-n+1)]
>>> [[0, 1, 2, 3, 4]]
>>>
>>> n = 10 # n > len(l)
>>> [l[i: i + min(n, len(l)-i)] for i in range(len(l)-n+1)]
>>> []

这是一个老问题,但是对于那些仍然感兴趣的人来说,在这个页面中有一个使用生成器的窗口滑块的伟大实现(Adrian Rosebrock)。

它是OpenCV的一个实现,但是你可以很容易地将它用于任何其他目的。对于渴望的人,我将粘贴代码在这里,但为了更好地理解它,我建议访问原始页面。

def sliding_window(image, stepSize, windowSize):
    # slide a window across the image
    for y in xrange(0, image.shape[0], stepSize):
        for x in xrange(0, image.shape[1], stepSize):
            # yield the current window
            yield (x, y, image[y:y + windowSize[1], x:x + windowSize[0]])

提示:您可以在迭代生成器时检查窗口的.shape,以丢弃那些不符合您需求的窗口

干杯