最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

从十亿个数字中找到前100个最好使用包含100个元素的最小堆。

首先用遇到的前100个数字对最小堆进行质数。Min-heap将前100个数字中最小的存储在根(顶部)。

现在,当你继续计算其他数字时,只将它们与根数(100中最小的数)进行比较。

如果遇到的新数字大于最小堆的根,则将根替换为该数字,否则忽略它。

作为在最小堆中插入新数字的一部分,堆中最小的数字将移到顶部(根)。

一旦我们遍历了所有的数字,我们将得到最小堆中最大的100个数字。

其他回答

这个问题只需一行c++代码就可以用N log(100)的复杂度(而不是N log N)来回答。

 std::vector<int> myvector = ...; // Define your 1 billion numbers. 
                                 // Assumed integer just for concreteness 
 std::partial_sort (myvector.begin(), myvector.begin()+100, myvector.end());

最终答案将是一个向量,其中前100个元素保证是数组中最大的100个数字,而其余元素是无序的

c++ STL(标准库)对于这类问题非常方便。

注意:我并不是说这是最佳的解决方案,但它可以挽救你的面试。

I would find out who had the time to put a billion numbers into an array and fire him. Must work for government. At least if you had a linked list you could insert a number into the middle without moving half a billion to make room. Even better a Btree allows for a binary search. Each comparison eliminates half of your total. A hash algorithm would allow you to populate the data structure like a checkerboard but not so good for sparse data. As it is your best bet is to have a solution array of 100 integers and keep track of the lowest number in your solution array so you can replace it when you come across a higher number in the original array. You would have to look at every element in the original array assuming it is not sorted to begin with.

求n个元素中最大的m个元素,其中n >>> m

最简单的解决方案,每个人都应该很明显,就是简单地做m次冒泡排序算法。

然后打印出数组的最后n个元素。

它不需要外部数据结构,并且使用了一种大家都知道的算法。

运行时间估计为O(m*n)。到目前为止最好的答案是O(nlog (m)),所以这个解决方案对于小m来说并不显着昂贵。

我并不是说这不能改进,但这是迄今为止最简单的解决方案。

管理一个单独的列表是额外的工作,每次你找到另一个替代物时,你都必须在整个列表中移动东西。把它排序,选前100名。

使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。

请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。