最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
如果在面试中被问到这个问题,面试官可能想看你解决问题的过程,而不仅仅是你的算法知识。
The description is quite general so maybe you can ask him the range or meaning of these numbers to make the problem clear. Doing this may impress an interviewer. If, for example, these numbers stands for people's age then it's a much easier problem. With a reasonable assumption that nobody alive is older than 200, you can use an integer array of size 200 (maybe 201) to count the number of people with the same age in just one iteration. Here the index means the age. After this it's a piece of cake to find 100 largest numbers. By the way this algorithm is called counting sort.
无论如何,让问题更具体、更清楚对你在面试中是有好处的。
其他回答
受@ron teller回答的启发,这里有一个简单的C程序来做你想做的事情。
#include <stdlib.h>
#include <stdio.h>
#define TOTAL_NUMBERS 1000000000
#define N_TOP_NUMBERS 100
int
compare_function(const void *first, const void *second)
{
int a = *((int *) first);
int b = *((int *) second);
if (a > b){
return 1;
}
if (a < b){
return -1;
}
return 0;
}
int
main(int argc, char ** argv)
{
if(argc != 2){
printf("please supply a path to a binary file containing 1000000000"
"integers of this machine's wordlength and endianness\n");
exit(1);
}
FILE * f = fopen(argv[1], "r");
if(!f){
exit(1);
}
int top100[N_TOP_NUMBERS] = {0};
int sorts = 0;
for (int i = 0; i < TOTAL_NUMBERS; i++){
int number;
int ok;
ok = fread(&number, sizeof(int), 1, f);
if(!ok){
printf("not enough numbers!\n");
break;
}
if(number > top100[0]){
sorts++;
top100[0] = number;
qsort(top100, N_TOP_NUMBERS, sizeof(int), compare_function);
}
}
printf("%d sorts made\n"
"the top 100 integers in %s are:\n",
sorts, argv[1] );
for (int i = 0; i < N_TOP_NUMBERS; i++){
printf("%d\n", top100[i]);
}
fclose(f);
exit(0);
}
在我的机器上(具有快速SSD的core i3),它需要25秒,并进行1724种排序。 我用dd if=/dev/urandom/ count=1000000000 bs=1生成了一个二进制文件。
显然,一次只从磁盘读取4个字节会有性能问题,但这只是为了举例。好的一面是,只需要很少的内存。
虽然其他的quickselect解决方案已经被否决,但事实是quickselect将比使用大小为100的队列更快地找到解决方案。在比较方面,Quickselect的预期运行时间为2n + o(n)。一个非常简单的实现是
array = input array of length n
r = Quickselect(array,n-100)
result = array of length 100
for(i = 1 to n)
if(array[i]>r)
add array[i] to result
这平均需要3n + o(n)次比较。此外,quickselect将数组中最大的100个项保留在最右边的100个位置,这可以提高效率。所以实际上,运行时间可以提高到2n+o(n)。
有一个问题是,这是预期的运行时间,而不是最坏的情况,但通过使用一个不错的主元选择策略(例如,随机选择21个元素,并选择这21个元素的中位数作为主元),那么比较的数量可以保证高概率为(2+c)n对于任意小的常数c。
事实上,通过使用优化的抽样策略(例如随机抽样平方根(n)个元素,并选择第99百分位数),对于任意小的c(假设K,要选择的元素数量为o(n)),运行时间可以降至(1+c)n + o(n)。
另一方面,使用大小为100的队列将需要O(log(100)n)个比较,log以2为底100的对数大约等于6.6。
如果我们从更抽象的意义上考虑这个问题,即从大小为N的数组中选择最大的K个元素,其中K=o(N),但K和N都趋于无穷大,那么快速选择版本的运行时间将是o(N),队列版本的运行时间将是o(N log K),因此在这种意义上,快速选择也渐近地更好。
在注释中,提到队列解决方案将在随机输入的预期时间N + K log N内运行。当然,随机输入假设永远不会成立,除非问题明确地说明了这一点。队列解决方案可以以随机顺序遍历数组,但这将产生对随机数生成器的N次调用的额外成本,以及排列整个输入数组或分配一个长度为N的包含随机索引的新数组。
如果问题不允许您移动原始数组中的元素,并且分配内存的成本很高,因此不能复制数组,那就是另一回事了。但严格地从运行时间来看,这是最好的解决方案。
你可以在O(n)个时间内完成。只需遍历列表,并跟踪在任何给定点上看到的最大的100个数字,以及该组中的最小值。当你发现一个新的数字大于你的10个数字中的最小值,然后替换它并更新你的新的100的最小值(可能每次你都要花100的常数时间来确定,但这并不影响整体分析)。
此代码用于在未排序数组中查找N个最大的数字。
#include <iostream>
using namespace std;
#define Array_Size 5 // No Of Largest Numbers To Find
#define BILLION 10000000000
void findLargest(int max[], int array[]);
int checkDup(int temp, int max[]);
int main() {
int array[BILLION] // contains data
int i=0, temp;
int max[Array_Size];
findLargest(max,array);
cout<< "The "<< Array_Size<< " largest numbers in the array are: \n";
for(i=0; i< Array_Size; i++)
cout<< max[i] << endl;
return 0;
}
void findLargest(int max[], int array[])
{
int i,temp,res;
for(int k=0; k< Array_Size; k++)
{
i=0;
while(i < BILLION)
{
for(int j=0; j< Array_Size ; j++)
{
temp = array[i];
res= checkDup(temp,max);
if(res == 0 && max[j] < temp)
max[j] = temp;
}
i++;
}
}
}
int checkDup(int temp, int max[])
{
for(int i=0; i<N_O_L_N_T_F; i++)
{
if(max[i] == temp)
return -1;
}
return 0;
}
这可能不是一个有效的方法,但可以完成工作。
希望这能有所帮助
一个非常简单的解决方案是遍历该数组100次。也就是O(n)
每次取出最大的数字(并将其值更改为最小值,以便在下一个迭代中看不到它,或者跟踪以前答案的索引(通过跟踪索引,原始数组可以有多个相同的数字))。经过100次迭代,就得到了最大的100个数字。