最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。
请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。
其他回答
这个问题只需一行c++代码就可以用N log(100)的复杂度(而不是N log N)来回答。
std::vector<int> myvector = ...; // Define your 1 billion numbers.
// Assumed integer just for concreteness
std::partial_sort (myvector.begin(), myvector.begin()+100, myvector.end());
最终答案将是一个向量,其中前100个元素保证是数组中最大的100个数字,而其余元素是无序的
c++ STL(标准库)对于这类问题非常方便。
注意:我并不是说这是最佳的解决方案,但它可以挽救你的面试。
你可以遍历这些数字,需要O(n)
只要发现一个大于当前最小值的值,就将新值添加到一个大小为100的循环队列中。
循环队列的最小值就是新的比较值。继续往队列中添加。如果已满,则从队列中提取最小值。
虽然其他的quickselect解决方案已经被否决,但事实是quickselect将比使用大小为100的队列更快地找到解决方案。在比较方面,Quickselect的预期运行时间为2n + o(n)。一个非常简单的实现是
array = input array of length n
r = Quickselect(array,n-100)
result = array of length 100
for(i = 1 to n)
if(array[i]>r)
add array[i] to result
这平均需要3n + o(n)次比较。此外,quickselect将数组中最大的100个项保留在最右边的100个位置,这可以提高效率。所以实际上,运行时间可以提高到2n+o(n)。
有一个问题是,这是预期的运行时间,而不是最坏的情况,但通过使用一个不错的主元选择策略(例如,随机选择21个元素,并选择这21个元素的中位数作为主元),那么比较的数量可以保证高概率为(2+c)n对于任意小的常数c。
事实上,通过使用优化的抽样策略(例如随机抽样平方根(n)个元素,并选择第99百分位数),对于任意小的c(假设K,要选择的元素数量为o(n)),运行时间可以降至(1+c)n + o(n)。
另一方面,使用大小为100的队列将需要O(log(100)n)个比较,log以2为底100的对数大约等于6.6。
如果我们从更抽象的意义上考虑这个问题,即从大小为N的数组中选择最大的K个元素,其中K=o(N),但K和N都趋于无穷大,那么快速选择版本的运行时间将是o(N),队列版本的运行时间将是o(N log K),因此在这种意义上,快速选择也渐近地更好。
在注释中,提到队列解决方案将在随机输入的预期时间N + K log N内运行。当然,随机输入假设永远不会成立,除非问题明确地说明了这一点。队列解决方案可以以随机顺序遍历数组,但这将产生对随机数生成器的N次调用的额外成本,以及排列整个输入数组或分配一个长度为N的包含随机索引的新数组。
如果问题不允许您移动原始数组中的元素,并且分配内存的成本很高,因此不能复制数组,那就是另一回事了。但严格地从运行时间来看,这是最好的解决方案。
使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。
请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。
我知道这可能会被埋没,但这是我对一个基MSD的变化的想法。
伪代码:
//billion is the array of 1 billion numbers
int[] billion = getMyBillionNumbers();
//this assumes these are 32-bit integers and we are using hex digits
int[][] mynums = int[8][16];
for number in billion
putInTop100Array(number)
function putInTop100Array(number){
//basically if we got past all the digits successfully
if(number == null)
return true;
msdIdx = getMsdIdx(number);
msd = getMsd(number);
//check if the idx above where we are is already full
if(mynums[msdIdx][msd+1] > 99) {
return false;
} else if(putInTop100Array(removeMSD(number)){
mynums[msdIdx][msd]++;
//we've found 100 digits here, no need to keep looking below where we are
if(mynums[msdIdx][msd] > 99){
for(int i = 0; i < mds; i++){
//making it 101 just so we can tell the difference
//between numbers where we actually found 101, and
//where we just set it
mynums[msdIdx][i] = 101;
}
}
return true;
}
return false;
}
函数getMsdIdx(int num)将返回最高位(非零)的下标。函数getMsd(int num)将返回最高位。函数removeMSD(int num)将从一个数字中删除最有效的数字并返回该数字(如果删除最有效的数字后什么都没有留下,则返回null)。
完成后,剩下的就是遍历mynums以获取前100位数字。这大概是这样的:
int[] nums = int[100];
int idx = 0;
for(int i = 7; i >= 0; i--){
int timesAdded = 0;
for(int j = 16; j >=0 && timesAdded < 100; j--){
for(int k = mynums[i][j]; k > 0; k--){
nums[idx] += j;
timesAdded++;
idx++;
}
}
}
我需要注意的是,尽管上面的图看起来时间复杂度很高,但实际上它只有O(7*100)左右。
快速解释一下这是为了做什么: 从本质上讲,这个系统试图基于数字中数字的索引和数字的值来使用2d数组中的每个数字。它使用这些值作为索引来跟踪数组中插入了多少数值。当达到100时,它会关闭所有“较低的分支”。
这个算法的时间大概是O(十亿*log(16)*7)+O(100)。我可能是错的。此外,这很可能需要调试,因为它有点复杂,我只是把它写在我的头上。
编辑:没有解释的反对票是没有帮助的。如果你认为这个答案不正确,请留下评论。我很确定,StackOverflow甚至告诉你这样做,当你向下投票。