最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。
我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。
Arrays.sort(array);
面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?
当前回答
使用第n个元素得到第100个元素O(n) 迭代第二次,但只有一次,并输出大于此特定元素的所有元素。
请特别注意,第二步可能很容易并行计算!当你需要一百万个最大的元素时,它也会很有效。
其他回答
Recently I am adapting a theory that all the problems in the world could be solved with O(1). And even this one. It wasn't clear from the question what is the range of the numbers. If the numbers are it range from 1 to 10, then probably the the top 100 largest numbers will be a group of 10. The chance that the highest number will be picked out of the 1 billion numbers when the highest number is very small in compare to to 1 billion are very big. So I would give this as an answer in that interview.
复杂度为O(N)
首先创建一个100个int的数组,将这个数组的第一个元素初始化为N个值的第一个元素, 用另一个变量CurrentBig来跟踪当前元素的索引
遍历N个值
if N[i] > M[CurrentBig] {
M[CurrentBig]=N[i]; ( overwrite the current value with the newly found larger number)
CurrentBig++; ( go to the next position in the M array)
CurrentBig %= 100; ( modulo arithmetic saves you from using lists/hashes etc.)
M[CurrentBig]=N[i]; ( pick up the current value again to use it for the next Iteration of the N array)
}
完成后,从CurrentBig中打印M数组100次模100:-) 对于学生:确保代码的最后一行在代码退出之前没有胜过有效数据
您可以使用快速选择算法在(按顺序)索引[十亿-101]处查找数字 然后遍历这些数字找出比这个数字更大的数。
array={...the billion numbers...}
result[100];
pivot=QuickSelect(array,billion-101);//O(N)
for(i=0;i<billion;i++)//O(N)
if(array[i]>=pivot)
result.add(array[i]);
该算法时间为:2 X O(N) = O(N)(平均情况性能)
Thomas Jungblut建议的第二个选择是:
使用堆构建最大堆将花费O(N),然后前100个最大的数字将在堆的顶部,所有你需要的是把它们从堆(100 X O(Log(N))。
该算法时间为:O(N) + 100 X O(Log(N)) = O(N)
我对此的直接反应是使用堆,但有一种方法可以使用QuickSelect,而不需要在任何时候保留所有的输入值。
创建一个大小为200的数组,并用前200个输入值填充它。运行QuickSelect并丢弃低100个位置,留下100个空闲位置。读入接下来的100个输入值并再次运行QuickSelect。继续执行,直到以100个批次为单位运行整个输入。
最后是前100个值。对于N个值,您运行QuickSelect大约N/100次。每个快速选择的代价大约是某个常数的200倍,所以总代价是某个常数的2N倍。在我看来,输入的大小是线性的,不管我在这个解释中硬连接的参数大小是100。
你可以在O(n)个时间内完成。只需遍历列表,并跟踪在任何给定点上看到的最大的100个数字,以及该组中的最小值。当你发现一个新的数字大于你的10个数字中的最小值,然后替换它并更新你的新的100的最小值(可能每次你都要花100的常数时间来确定,但这并不影响整体分析)。