我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?


当前回答

如果您想要单行模板。在这里

int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>1)>>2)>>4)>>8)>>16); }

or

int nxt_po2(int n) { return 1 + (n|=(n|=(n|=(n|=(n|=(n-=1)>>(1<<0))>>(1<<1))>>(1<<2))>>(1<<3))>>(1<<4)); }

其他回答

我认为这也是可行的:

int power = 1;
while(power < x)
    power*=2;

答案就是力量。

假设你有一个好的编译器&它可以做bit twiddling在这一点上我以上,但无论如何这是工作!!

    // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
    #define SH1(v)  ((v-1) | ((v-1) >> 1))            // accidently came up w/ this...
    #define SH2(v)  ((v) | ((v) >> 2))
    #define SH4(v)  ((v) | ((v) >> 4))
    #define SH8(v)  ((v) | ((v) >> 8))
    #define SH16(v) ((v) | ((v) >> 16))
    #define OP(v) (SH16(SH8(SH4(SH2(SH1(v))))))         

    #define CB0(v)   ((v) - (((v) >> 1) & 0x55555555))
    #define CB1(v)   (((v) & 0x33333333) + (((v) >> 2) & 0x33333333))
    #define CB2(v)   ((((v) + ((v) >> 4) & 0xF0F0F0F) * 0x1010101) >> 24)
    #define CBSET(v) (CB2(CB1(CB0((v)))))
    #define FLOG2(v) (CBSET(OP(v)))

测试代码如下:

#include <iostream>

using namespace std;

// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogObvious
#define SH1(v)  ((v-1) | ((v-1) >> 1))  // accidently guess this...
#define SH2(v)  ((v) | ((v) >> 2))
#define SH4(v)  ((v) | ((v) >> 4))
#define SH8(v)  ((v) | ((v) >> 8))
#define SH16(v) ((v) | ((v) >> 16))
#define OP(v) (SH16(SH8(SH4(SH2(SH1(v))))))         

#define CB0(v)   ((v) - (((v) >> 1) & 0x55555555))
#define CB1(v)   (((v) & 0x33333333) + (((v) >> 2) & 0x33333333))
#define CB2(v)   ((((v) + ((v) >> 4) & 0xF0F0F0F) * 0x1010101) >> 24)
#define CBSET(v) (CB2(CB1(CB0((v)))))
#define FLOG2(v) (CBSET(OP(v))) 

#define SZ4         FLOG2(4)
#define SZ6         FLOG2(6)
#define SZ7         FLOG2(7)
#define SZ8         FLOG2(8) 
#define SZ9         FLOG2(9)
#define SZ16        FLOG2(16)
#define SZ17        FLOG2(17)
#define SZ127       FLOG2(127)
#define SZ1023      FLOG2(1023)
#define SZ1024      FLOG2(1024)
#define SZ2_17      FLOG2((1ul << 17))  // 
#define SZ_LOG2     FLOG2(SZ)

#define DBG_PRINT(x) do { std::printf("Line:%-4d" "  %10s = %-10d\n", __LINE__, #x, x); } while(0);

uint32_t arrTble[FLOG2(63)];

int main(){
    int8_t n;

    DBG_PRINT(SZ4);    
    DBG_PRINT(SZ6);    
    DBG_PRINT(SZ7);    
    DBG_PRINT(SZ8);    
    DBG_PRINT(SZ9); 
    DBG_PRINT(SZ16);
    DBG_PRINT(SZ17);
    DBG_PRINT(SZ127);
    DBG_PRINT(SZ1023);
    DBG_PRINT(SZ1024);
    DBG_PRINT(SZ2_17);

    return(0);
}

输出:

Line:39           SZ4 = 2
Line:40           SZ6 = 3
Line:41           SZ7 = 3
Line:42           SZ8 = 3
Line:43           SZ9 = 4
Line:44          SZ16 = 4
Line:45          SZ17 = 5
Line:46         SZ127 = 7
Line:47        SZ1023 = 10
Line:48        SZ1024 = 10
Line:49        SZ2_16 = 17

c#中的可移植解决方案:

int GetNextPowerOfTwo(int input) {
    return 1 << (int)Math.Ceiling(Math.Log2(input));
}

Math.Ceiling(Math.Log2(value))计算2的下一个幂的指数,1 <<通过移位计算实值。

更快的解决方案,如果你有。net Core 3或更高版本:

uint GetNextPowerOfTwoFaster(uint input) {
    return (uint)1 << (sizeof(uint) * 8 - System.Numerics.BitOperations.LeadingZeroCount(input - 1));
}

这将使用system . numbers . bitoperations . leadingzerocount(),如果可用,则使用硬件指令:

https://github.com/dotnet/corert/blob/master/src/System.Private.CoreLib/shared/System/Numerics/BitOperations.cs

更新:

RoundUpToPowerOf2()即将在。net 6!内部实现与上面的. net Core 3解决方案基本相同。

这里是社区更新。

@YannDroneaud答案的变体,适用于x==1,仅适用于x86平台,编译器,gcc或clang:

__attribute__ ((const))
static inline uint32_t p2(uint32_t x)
{
#if 0
    assert(x > 0);
    assert(x <= ((UINT32_MAX/2) + 1));
#endif
  int clz;
  uint32_t xm1 = x-1;
  asm(
    "lzcnt %1,%0"
    :"=r" (clz)
    :"rm" (xm1)
    :"cc"
    );
    return 1 << (32 - clz);
}

将其转换为浮点数,然后使用.hex()来显示标准化的IEEE表示。

> > >(789)浮动.hex () “0 x1.8a80000000000p + 9”

然后提取指数,再加1。

>>> int(float(789).hex().split('p+')[1]) + 1 10

取2的这个次方。

> > > 2 * * (int (float(789)。hex(),斯普利特(“p +”)[1])+ 1) 1024