迭代器和生成器之间的区别是什么?举一些例子来说明你在什么时候使用每种情况会很有帮助。
当前回答
每个人都有一个非常漂亮和冗长的答案,我真的很感激。我只是想给那些在概念上还不太清楚的人一个简短的回答:
If you create your own iterator, it is a little bit involved - you have to create a class and at least implement the iter and the next methods. But what if you don't want to go through this hassle and want to quickly create an iterator. Fortunately, Python provides a short-cut way to defining an iterator. All you need to do is define a function with at least 1 call to yield and now when you call that function it will return "something" which will act like an iterator (you can call next method and use it in a for loop). This something has a name in Python called Generator
希望这能澄清一点。
其他回答
iterator是一个更通用的概念:任何具有__next__方法(Python 2中的next)和__iter__方法且返回self的对象。
每个生成器都是迭代器,反之亦然。生成器是通过调用具有一个或多个yield表达式(yield语句,在Python 2.5及更早版本中)的函数来构建的,它是一个满足上一段对迭代器定义的对象。
当你需要一个具有复杂状态维护行为的类,或者想公开__next__(以及__iter__和__init__)之外的其他方法时,你可能想使用自定义迭代器,而不是生成器。大多数情况下,一个生成器(有时,对于足够简单的需求,一个生成器表达式)就足够了,而且编码更简单,因为状态维护(在合理的范围内)基本上是由框架挂起和恢复“为您完成”的。
例如,一个生成器,如:
def squares(start, stop):
for i in range(start, stop):
yield i * i
generator = squares(a, b)
或等效的生成器表达式(genexp)
generator = (i*i for i in range(a, b))
将需要更多的代码来构建自定义迭代器:
class Squares(object):
def __init__(self, start, stop):
self.start = start
self.stop = stop
def __iter__(self): return self
def __next__(self): # next in Python 2
if self.start >= self.stop:
raise StopIteration
current = self.start * self.start
self.start += 1
return current
iterator = Squares(a, b)
但是,当然,使用类Squares,你可以很容易地提供额外的方法。
def current(self):
return self.start
如果您的应用程序中确实需要这些额外的功能。
强烈推荐Ned Batchelder的迭代器和生成器示例
一个没有生成器的方法,它对偶数进行处理
def evens(stream):
them = []
for n in stream:
if n % 2 == 0:
them.append(n)
return them
而通过使用发电机
def evens(stream):
for n in stream:
if n % 2 == 0:
yield n
我们不需要任何列表或返回语句 有效的大/无限长的流…它只是走动并产生值
调用evens方法(生成器)和往常一样
num = [...]
for n in evens(num):
do_smth(n)
发电机也用于打破双环
迭代器
满页的书是可迭代对象,书签是可迭代对象 迭代器
而这个书签除了下一步移动什么也做不了
litr = iter([1,2,3])
next(litr) ## 1
next(litr) ## 2
next(litr) ## 3
next(litr) ## StopIteration (Exception) as we got end of the iterator
使用生成器…我们需要一个函数
使用迭代器…我们需要next和iter
如前所述:
Generator函数返回一个迭代器对象
Iterator的全部好处:
每次在内存中存储一个元素
我用一种非常简单的方式专门为Python新手编写,尽管Python在本质上做了很多事情。
让我们从最基本的开始:
考虑一个列表,
l = [1,2,3]
让我们写一个等效函数:
def f():
return [1,2,3]
打印(l)的O /p: [1,2,3] & O /p打印(f()): [1,2,3]
让列表l可迭代:在python中,列表总是可迭代的,这意味着你可以在任何你想要的时候应用迭代器。
让我们在list上应用迭代器:
iter_l = iter(l) # iterator applied explicitly
让我们把一个函数设为可迭代的,也就是说,写一个等效的生成器函数。 在python中,只要你引入关键字yield;它变成了一个生成器函数,迭代器将隐式应用。
注意:每个生成器在应用隐式迭代器时总是可迭代的,这里隐式迭代器是关键 因此生成器函数将是:
def f():
yield 1
yield 2
yield 3
iter_f = f() # which is iter(f) as iterator is already applied implicitly
如果你观察到,一旦你让函数f成为一个生成器,它就已经是iter(f)
Now,
L是列表,在应用迭代器方法iter后,它变成, iter(左) F已经是iter(F),在应用迭代器方法“iter”它 变成iter(iter(f))也就是iter(f)
这有点像你将int类型转换为int(x)它已经是int类型并且它将保持int(x)
例如o/p:
print(type(iter(iter(l))))
is
<class 'list_iterator'>
别忘了这是Python而不是C或c++
因此,由上述解释得出的结论是:
列出l ~= iter(l) 生成函数f == iter(f)
这篇文章涵盖了两者之间的许多细节差异,但想在两者之间的概念差异上添加一些东西:
[…GoF书中定义的迭代器从集合中检索项,而生成器可以“凭空”生成项。这就是为什么斐波那契序列生成器是一个常见的例子:无限级数的数字不能存储在一个集合中。
Ramalho,卢西亚诺。流利的Python(第415页)。O ' reilly媒体。Kindle版。
当然,它并没有涵盖所有的方面,但我认为它给出了一个很好的概念,当一个人是有用的。
迭代器是使用next()方法获取序列的以下值的对象。
生成器是使用yield关键字生成或生成值序列的函数。
由生成器函数(下面的ex: foo())返回的生成器对象(下面的ex: f)上的每个next()方法调用,都会生成序列中的下一个值。
当调用生成器函数时,它返回一个生成器对象,甚至不需要开始执行该函数。当第一次调用next()方法时,函数开始执行,直到到达yield语句,该语句返回yield值。收益率会跟踪发生了什么,也就是说,它会记住最后一次执行。其次,next()调用从前一个值开始。
下面的示例演示生成器对象上yield和对next方法的调用之间的相互作用。
>>> def foo():
... print("begin")
... for i in range(3):
... print("before yield", i)
... yield i
... print("after yield", i)
... print("end")
...
>>> f = foo()
>>> next(f)
begin
before yield 0 # Control is in for loop
0
>>> next(f)
after yield 0
before yield 1 # Continue for loop
1
>>> next(f)
after yield 1
before yield 2
2
>>> next(f)
after yield 2
end
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录