迭代器和生成器之间的区别是什么?举一些例子来说明你在什么时候使用每种情况会很有帮助。
iterator是一个更通用的概念:任何具有__next__方法(Python 2中的next)和__iter__方法且返回self的对象。
每个生成器都是迭代器,反之亦然。生成器是通过调用具有一个或多个yield表达式(yield语句,在Python 2.5及更早版本中)的函数来构建的,它是一个满足上一段对迭代器定义的对象。
当你需要一个具有复杂状态维护行为的类,或者想公开__next__(以及__iter__和__init__)之外的其他方法时,你可能想使用自定义迭代器,而不是生成器。大多数情况下,一个生成器(有时,对于足够简单的需求,一个生成器表达式)就足够了,而且编码更简单,因为状态维护(在合理的范围内)基本上是由框架挂起和恢复“为您完成”的。
例如,一个生成器,如:
def squares(start, stop):
for i in range(start, stop):
yield i * i
generator = squares(a, b)
或等效的生成器表达式(genexp)
generator = (i*i for i in range(a, b))
将需要更多的代码来构建自定义迭代器:
class Squares(object):
def __init__(self, start, stop):
self.start = start
self.stop = stop
def __iter__(self): return self
def __next__(self): # next in Python 2
if self.start >= self.stop:
raise StopIteration
current = self.start * self.start
self.start += 1
return current
iterator = Squares(a, b)
但是,当然,使用类Squares,你可以很容易地提供额外的方法。
def current(self):
return self.start
如果您的应用程序中确实需要这些额外的功能。
迭代器是使用next()方法获取序列的以下值的对象。
生成器是使用yield关键字生成或生成值序列的函数。
由生成器函数(下面的ex: foo())返回的生成器对象(下面的ex: f)上的每个next()方法调用,都会生成序列中的下一个值。
当调用生成器函数时,它返回一个生成器对象,甚至不需要开始执行该函数。当第一次调用next()方法时,函数开始执行,直到到达yield语句,该语句返回yield值。收益率会跟踪发生了什么,也就是说,它会记住最后一次执行。其次,next()调用从前一个值开始。
下面的示例演示生成器对象上yield和对next方法的调用之间的相互作用。
>>> def foo():
... print("begin")
... for i in range(3):
... print("before yield", i)
... yield i
... print("after yield", i)
... print("end")
...
>>> f = foo()
>>> next(f)
begin
before yield 0 # Control is in for loop
0
>>> next(f)
after yield 0
before yield 1 # Continue for loop
1
>>> next(f)
after yield 1
before yield 2
2
>>> next(f)
after yield 2
end
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
迭代器和生成器之间的区别是什么?举一些例子来说明你在什么时候使用每种情况会很有帮助。
总结:迭代器是具有__iter__和__next__ (Python 2中的next)方法的对象。生成器提供了一种简单的内置方法来创建iterator实例。
包含yield的函数仍然是一个函数,当调用它时,返回一个生成器对象的实例:
def a_function():
"when called, returns generator object"
yield
生成器表达式也返回一个生成器:
a_generator = (i for i in range(0))
有关更深入的阐述和示例,请继续阅读。
Generator是一个迭代器
具体来说,generator是迭代器的子类型。
>>> import collections, types
>>> issubclass(types.GeneratorType, collections.Iterator)
True
我们可以通过几种方式创建生成器。一种非常常见和简单的方法是使用函数。
具体来说,包含yield的函数是一个函数,当调用它时,返回一个生成器:
>>> def a_function():
"just a function definition with yield in it"
yield
>>> type(a_function)
<class 'function'>
>>> a_generator = a_function() # when called
>>> type(a_generator) # returns a generator
<class 'generator'>
生成器也是一个迭代器:
>>> isinstance(a_generator, collections.Iterator)
True
迭代器是可迭代对象
迭代器是可迭代对象,
>>> issubclass(collections.Iterator, collections.Iterable)
True
它需要一个返回迭代器的__iter__方法:
>>> collections.Iterable()
Traceback (most recent call last):
File "<pyshell#79>", line 1, in <module>
collections.Iterable()
TypeError: Can't instantiate abstract class Iterable with abstract methods __iter__
一些可迭代对象的例子是内置元组、列表、字典、集合、冻结集、字符串、字节字符串、字节数组、范围和memoryview:
>>> all(isinstance(element, collections.Iterable) for element in (
(), [], {}, set(), frozenset(), '', b'', bytearray(), range(0), memoryview(b'')))
True
迭代器需要一个next或__next__方法
在Python 2中:
>>> collections.Iterator()
Traceback (most recent call last):
File "<pyshell#80>", line 1, in <module>
collections.Iterator()
TypeError: Can't instantiate abstract class Iterator with abstract methods next
在Python 3中:
>>> collections.Iterator()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Can't instantiate abstract class Iterator with abstract methods __next__
我们可以使用iter函数从内置对象(或自定义对象)中获取迭代器:
>>> all(isinstance(iter(element), collections.Iterator) for element in (
(), [], {}, set(), frozenset(), '', b'', bytearray(), range(0), memoryview(b'')))
True
当你试图使用for循环对象时,__iter__方法会被调用。然后在迭代器对象上调用__next__方法,为循环取出每一项。迭代器在耗尽它时抛出StopIteration,此时它不能被重用。
来自文档
从内置类型文档的迭代器类型部分的生成器类型部分:
Python的生成器提供了一种实现迭代器协议的方便方法。如果容器对象的__iter__()方法被实现为生成器,它将自动返回一个迭代器对象(技术上,一个生成器对象),提供__iter__()和next() [__next__() in python3]方法。关于生成器的更多信息可以在yield表达式的文档中找到。
(强调)。
从这里我们了解到generator是一种(方便的)迭代器类型。
迭代器对象示例
您可以通过创建或扩展自己的对象来创建实现Iterator协议的对象。
class Yes(collections.Iterator):
def __init__(self, stop):
self.x = 0
self.stop = stop
def __iter__(self):
return self
def next(self):
if self.x < self.stop:
self.x += 1
return 'yes'
else:
# Iterators must raise when done, else considered broken
raise StopIteration
__next__ = next # Python 3 compatibility
但是简单地使用Generator更容易做到这一点:
def yes(stop):
for _ in range(stop):
yield 'yes'
或者更简单,生成器表达式(类似于列表推导式):
yes_expr = ('yes' for _ in range(stop))
它们都可以以同样的方式使用:
>>> stop = 4
>>> for i, y1, y2, y3 in zip(range(stop), Yes(stop), yes(stop),
('yes' for _ in range(stop))):
... print('{0}: {1} == {2} == {3}'.format(i, y1, y2, y3))
...
0: yes == yes == yes
1: yes == yes == yes
2: yes == yes == yes
3: yes == yes == yes
结论
当需要将Python对象扩展为可迭代的对象时,可以直接使用Iterator协议。
然而,在绝大多数情况下,您最适合使用yield来定义返回Generator Iterator的函数或考虑Generator expression。
最后,请注意生成器作为协程提供了更多的功能。我在回答“yield”关键字做什么?”时,深入地解释了Generators和yield语句。
添加一个答案,因为现有的答案都没有专门解决官方文献中的困惑。
生成器函数是用yield而不是return定义的普通函数。当被调用时,生成器函数返回一个生成器对象,这是一种迭代器——它有一个next()方法。当调用next()时,将返回生成器函数产生的下一个值。
函数或对象都可以被称为“生成器”,这取决于你阅读的Python源文档。Python术语表表示生成器函数,而Python wiki表示生成器对象。Python教程成功地在三句话中暗示了这两种用法:
生成器是用于创建迭代器的简单而强大的工具。它们像常规函数一样编写,但在需要返回数据时使用yield语句。每次在它上调用next()时,生成器都会从停止的地方恢复(它会记住所有的数据值和最后执行的语句)。
前两句话用生成器函数标识生成器,而第三句话用生成器对象标识它们。
尽管存在这些困惑,但人们可以从Python语言参考中找到明确的最终答案:
yield表达式仅在定义生成器函数时使用,并且只能在函数定义的主体中使用。在函数定义中使用yield表达式足以导致该定义创建一个生成器函数,而不是普通函数。 当调用generator函数时,它返回一个称为generator的迭代器。然后,该生成器控制生成器函数的执行。
因此,在正式和精确的用法中,“generator”不合格指的是生成器对象,而不是生成器功能。
上面的参考资料是针对Python 2的,但Python 3语言参考资料也说了同样的事情。然而,Python 3术语表指出
发电机……通常指生成器函数,但在某些上下文中也可能指生成器迭代器。在意图不明确的情况下,使用完整的术语可以避免歧义。
生成器函数,生成器对象,生成器:
Generator函数就像Python中的常规函数一样,但它包含一个或多个yield语句。Generator函数是一个很好的工具,可以尽可能简单地创建Iterator对象。generator函数返回的Iterator对象也称为generator对象或generator。
在这个例子中,我创建了一个Generator函数,它返回一个Generator对象< Generator对象fib at 0x01342480>。就像其他迭代器一样,Generator对象可以在for循环中使用,也可以与从Generator返回下一个值的内置函数next()一起使用。
def fib(max):
a, b = 0, 1
for i in range(max):
yield a
a, b = b, a + b
print(fib(10)) #<generator object fib at 0x01342480>
for i in fib(10):
print(i) # 0 1 1 2 3 5 8 13 21 34
print(next(myfib)) #0
print(next(myfib)) #1
print(next(myfib)) #1
print(next(myfib)) #2
因此,生成器函数是创建Iterator对象的最简单方法。
迭代器:
每个生成器对象都是迭代器,反之亦然。如果自定义迭代器对象的类实现了__iter__和__next__方法(也称为迭代器协议),则可以创建自定义迭代器对象。
然而,使用生成器函数来创建迭代器要容易得多,因为它们简化了迭代器的创建,但是自定义迭代器给了你更多的自由,你也可以根据你的需求实现其他方法,如下面的例子所示。
class Fib:
def __init__(self,max):
self.current=0
self.next=1
self.max=max
self.count=0
def __iter__(self):
return self
def __next__(self):
if self.count>self.max:
raise StopIteration
else:
self.current,self.next=self.next,(self.current+self.next)
self.count+=1
return self.next-self.current
def __str__(self):
return "Generator object"
itobj=Fib(4)
print(itobj) #Generator object
for i in Fib(4):
print(i) #0 1 1 2
print(next(itobj)) #0
print(next(itobj)) #1
print(next(itobj)) #1
对于相同的数据,你可以比较两种方法:
def myGeneratorList(n):
for i in range(n):
yield i
def myIterableList(n):
ll = n*[None]
for i in range(n):
ll[i] = i
return ll
# Same values
ll1 = myGeneratorList(10)
ll2 = myIterableList(10)
for i1, i2 in zip(ll1, ll2):
print("{} {}".format(i1, i2))
# Generator can only be read once
ll1 = myGeneratorList(10)
ll2 = myIterableList(10)
print("{} {}".format(len(list(ll1)), len(ll2)))
print("{} {}".format(len(list(ll1)), len(ll2)))
# Generator can be read several times if converted into iterable
ll1 = list(myGeneratorList(10))
ll2 = myIterableList(10)
print("{} {}".format(len(list(ll1)), len(ll2)))
print("{} {}".format(len(list(ll1)), len(ll2)))
此外,如果检查内存占用,生成器占用的内存要少得多,因为它不需要同时将所有值存储在内存中。
每个人都有一个非常漂亮和冗长的答案,我真的很感激。我只是想给那些在概念上还不太清楚的人一个简短的回答:
If you create your own iterator, it is a little bit involved - you have to create a class and at least implement the iter and the next methods. But what if you don't want to go through this hassle and want to quickly create an iterator. Fortunately, Python provides a short-cut way to defining an iterator. All you need to do is define a function with at least 1 call to yield and now when you call that function it will return "something" which will act like an iterator (you can call next method and use it in a for loop). This something has a name in Python called Generator
希望这能澄清一点。
之前的回答忽略了这一点:生成器有close方法,而典型的迭代器没有。close方法在生成器中触发StopIteration异常,该异常可能在迭代器中的finally子句中被捕获,以获得运行一些清理的机会。这种抽象使得它在大型迭代器中比简单迭代器更有用。可以像关闭文件一样关闭生成器,而不必担心下面有什么。
也就是说,我个人对第一个问题的回答是:iteratable只有__iter__方法,典型的迭代器只有__next__方法,生成器既有__iter__又有__next__,还有一个附加的close。
For the second question, my personal answer would be: in a public interface, I tend to favor generators a lot, since it’s more resilient: the close method an a greater composability with yield from. Locally, I may use iterators, but only if it’s a flat and simple structure (iterators does not compose easily) and if there are reasons to believe the sequence is rather short especially if it may be stopped before it reach the end. I tend to look at iterators as a low level primitive, except as literals.
对于控制流而言,生成器是一个与承诺同样重要的概念:两者都是抽象的和可组合的。
强烈推荐Ned Batchelder的迭代器和生成器示例
一个没有生成器的方法,它对偶数进行处理
def evens(stream):
them = []
for n in stream:
if n % 2 == 0:
them.append(n)
return them
而通过使用发电机
def evens(stream):
for n in stream:
if n % 2 == 0:
yield n
我们不需要任何列表或返回语句 有效的大/无限长的流…它只是走动并产生值
调用evens方法(生成器)和往常一样
num = [...]
for n in evens(num):
do_smth(n)
发电机也用于打破双环
迭代器
满页的书是可迭代对象,书签是可迭代对象 迭代器
而这个书签除了下一步移动什么也做不了
litr = iter([1,2,3])
next(litr) ## 1
next(litr) ## 2
next(litr) ## 3
next(litr) ## StopIteration (Exception) as we got end of the iterator
使用生成器…我们需要一个函数
使用迭代器…我们需要next和iter
如前所述:
Generator函数返回一个迭代器对象
Iterator的全部好处:
每次在内存中存储一个元素
我用一种非常简单的方式专门为Python新手编写,尽管Python在本质上做了很多事情。
让我们从最基本的开始:
考虑一个列表,
l = [1,2,3]
让我们写一个等效函数:
def f():
return [1,2,3]
打印(l)的O /p: [1,2,3] & O /p打印(f()): [1,2,3]
让列表l可迭代:在python中,列表总是可迭代的,这意味着你可以在任何你想要的时候应用迭代器。
让我们在list上应用迭代器:
iter_l = iter(l) # iterator applied explicitly
让我们把一个函数设为可迭代的,也就是说,写一个等效的生成器函数。 在python中,只要你引入关键字yield;它变成了一个生成器函数,迭代器将隐式应用。
注意:每个生成器在应用隐式迭代器时总是可迭代的,这里隐式迭代器是关键 因此生成器函数将是:
def f():
yield 1
yield 2
yield 3
iter_f = f() # which is iter(f) as iterator is already applied implicitly
如果你观察到,一旦你让函数f成为一个生成器,它就已经是iter(f)
Now,
L是列表,在应用迭代器方法iter后,它变成, iter(左) F已经是iter(F),在应用迭代器方法“iter”它 变成iter(iter(f))也就是iter(f)
这有点像你将int类型转换为int(x)它已经是int类型并且它将保持int(x)
例如o/p:
print(type(iter(iter(l))))
is
<class 'list_iterator'>
别忘了这是Python而不是C或c++
因此,由上述解释得出的结论是:
列出l ~= iter(l) 生成函数f == iter(f)
如果没有另外两个概念:可迭代对象和迭代器协议,就很难回答这个问题。
What is difference between iterator and iterable? Conceptually you iterate over iterable with the help of corresponding iterator. There are a few differences that can help to distinguish iterator and iterable in practice: One difference is that iterator has __next__ method, iterable does not. Another difference - both of them contain __iter__ method. In case of iterable it returns the corresponding iterator. In case of iterator it returns itself. This can help to distinguish iterator and iterable in practice.
>>> x = [1, 2, 3]
>>> dir(x)
[... __iter__ ...]
>>> x_iter = iter(x)
>>> dir(x_iter)
[... __iter__ ... __next__ ...]
>>> type(x_iter)
list_iterator
What are iterables in python? list, string, range etc. What are iterators? enumerate, zip, reversed etc. We may check this using the approach above. It's kind of confusing. Probably it would be easier if we have only one type. Is there any difference between range and zip? One of the reasons to do this - range has a lot of additional functionality - we may index it or check if it contains some number etc. (see details here). How can we create an iterator ourselves? Theoretically we may implement Iterator Protocol (see here). We need to write __next__ and __iter__ methods and raise StopIteration exception and so on (see Alex Martelli's answer for an example and possible motivation, see also here). But in practice we use generators. It seems to be by far the main method to create iterators in python.
我可以给你一些更有趣的例子,展示这些概念在实践中的一些令人困惑的用法:
in keras we have tf.keras.preprocessing.image.ImageDataGenerator; this class doesn't have __next__ and __iter__ methods; so it's not an iterator (or generator); if you call its flow_from_dataframe() method you'll get DataFrameIterator that has those methods; but it doesn't implement StopIteration (which is not common in build-in iterators in python); in documentation we may read that "A DataFrameIterator yielding tuples of (x, y)" - again confusing usage of terminology; we also have Sequence class in keras and that's custom implementation of a generator functionality (regular generators are not suitable for multithreading) but it doesn't implement __next__ and __iter__, rather it's a wrapper around generators (it uses yield statement);
无代码4行小抄:
A generator function is a function with yield in it.
A generator expression is like a list comprehension. It uses "()" vs "[]"
A generator object (often called 'a generator') is returned by both above.
A generator is also a subtype of iterator.
这篇文章涵盖了两者之间的许多细节差异,但想在两者之间的概念差异上添加一些东西:
[…GoF书中定义的迭代器从集合中检索项,而生成器可以“凭空”生成项。这就是为什么斐波那契序列生成器是一个常见的例子:无限级数的数字不能存储在一个集合中。
Ramalho,卢西亚诺。流利的Python(第415页)。O ' reilly媒体。Kindle版。
当然,它并没有涵盖所有的方面,但我认为它给出了一个很好的概念,当一个人是有用的。
可迭代对象是可以(自然地)迭代的对象。然而,要做到这一点,你将需要一个类似迭代器对象的东西,是的,术语可能令人困惑。可迭代对象包括__iter__方法,该方法将返回可迭代对象的迭代器对象。
迭代器对象是一个实现迭代器协议的对象——一组规则。在这种情况下,它必须至少有这两个方法:__iter__和__next__。__next__方法是一个提供新值的函数。__iter__方法返回迭代器对象。在更复杂的对象中,可能有单独的迭代器,但在更简单的情况下,__iter__返回对象本身(通常返回self)。
一个iterable对象是一个列表对象。它不是一个迭代器,但它有一个__iter__方法,返回一个迭代器。你可以直接以things.__iter__()的形式调用这个方法,或者使用iter(things)。
如果你想遍历任何集合,你需要使用它的迭代器:
things_iterator = iter(things)
for i in things_iterator:
print(i)
然而,Python会自动使用迭代器,这就是为什么你从来没有看到上面的例子。相反,你可以这样写:
for i in things:
print(i)
自己编写迭代器可能很乏味,所以Python有一个更简单的选择:生成器函数。生成器函数不是普通的函数。不是遍历代码并返回最终结果,而是延迟代码,函数立即返回一个生成器对象。
生成器对象类似于迭代器对象,因为它实现了迭代器协议。这对于大多数目的来说已经足够好了。在其他答案中有许多生成器的例子。
简而言之,迭代器是一个对象,它允许您迭代另一个对象,无论它是一个集合还是其他一些值的来源。生成器是一个简化的迭代器,它或多或少完成相同的工作,但更容易实现。
通常情况下,如果你只需要发电机,你会选择发电机。但是,如果您正在构建一个更复杂的对象,其中包含其他特性之间的迭代,则应该使用迭代器协议。
所有生成器都是迭代器,反之亦然。
from typing import Iterator
from typing import Iterable
from typing import Generator
class IT:
def __init__(self):
self.n = 0
def __iter__(self):
return self
def __next__(self):
if self.n == 4:
raise StopIteration
try:
return self.n
finally:
self.n += 1
def g():
for i in range(4):
yield i
def test(it):
print(f'type(it) = {type(it)}')
print(f'isinstance(it, Generator) = {isinstance(it, Generator)}')
print(f'isinstance(it, Iterator) = {isinstance(it, Iterator)}')
print(f'isinstance(it, Iterable) = {isinstance(it, Iterable)}')
print(next(it))
print(next(it))
print(next(it))
print(next(it))
try:
print(next(it))
except StopIteration:
print('boom\n')
print(f'issubclass(Generator, Iterator) = {issubclass(Generator, Iterator)}')
print(f'issubclass(Iterator, Iterable) = {issubclass(Iterator, Iterable)}')
print()
test(IT())
test(g())
输出:
issubclass(Generator, Iterator) = True
issubclass(Iterator, Iterable) = True
type(it) = <class '__main__.IT'>
isinstance(it, Generator) = False
isinstance(it, Iterator) = True
isinstance(it, Iterable) = True
0
1
2
3
boom
type(it) = <class 'generator'>
isinstance(it, Generator) = True
isinstance(it, Iterator) = True
isinstance(it, Iterable) = True
0
1
2
3
boom
推荐文章
- 使用python创建一个简单的XML文件
- APT命令行界面式的yes/no输入?
- 如何打印出状态栏和百分比?
- 在Python中获取大文件的MD5哈希值
- 在Python格式字符串中%s是什么意思?
- 如何循环通过所有但最后一项的列表?
- python用什么方法避免默认参数为空列表?
- ValueError: numpy。Ndarray大小改变,可能表示二进制不兼容。期望从C头得到88,从PyObject得到80
- Anaconda /conda -安装特定的软件包版本
- 我在哪里调用Keras的BatchNormalization函数?
- 打印测试执行时间并使用py.test锁定缓慢的测试
- 插入一行到熊猫数据框架
- 要列出Pandas DataFrame列
- 在Django模型中存储电话号码的最佳方法是什么?
- 从导入的模块中模拟函数