给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

int ans = 0;
while (ans == 0) 
{
     for (int i=0; i<3; i++) 
     {
          while ((r = rand5()) == 3){};
          ans += (r < 3) >> i
     }
}

其他回答

Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:

abstract class RNG {
  def apply(): Int
}

class Random5 extends RNG {
  val rng = new scala.util.Random
  var count = 0
  def apply() = { count += 1 ; rng.nextInt(5) }
}

class FiveSevener(five: RNG) {
  val sevens = new Array[Int](9)
  var nsevens = 0
  val to9 = 40353607;
  val to8 = 5764801;
  val to7 = 823543;
  def loadSevens(value: Int, count: Int) {
    nsevens = 0;
    var remaining = value;
    while (nsevens < count) {
      sevens(nsevens) = remaining % 7
      remaining /= 7
      nsevens += 1
    }
  }
  def loadSevens {
    var fivepow11 = 0;
    var i=0
    while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
    if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
    fivepow11 -= to9
    if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
    fivepow11 -= to8
    if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
    else loadSevens
  }
  def apply() = {
    if (nsevens==0) loadSevens
    nsevens -= 1
    sevens(nsevens)
  }
}

如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:

scala> val five = new Random5
five: Random5 = Random5@e9c592

scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423

scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)

scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000

scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)

scala> five.count
res1: Int = 125902876

分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。

这相当于Adam Rosenfield的解决方案,但对一些读者来说可能更清楚一些。它假设rand5()是一个函数,返回1到5范围内的统计随机整数。

int rand7()
{
    int vals[5][5] = {
        { 1, 2, 3, 4, 5 },
        { 6, 7, 1, 2, 3 },
        { 4, 5, 6, 7, 1 },
        { 2, 3, 4, 5, 6 },
        { 7, 0, 0, 0, 0 }
    };

    int result = 0;
    while (result == 0)
    {
        int i = rand5();
        int j = rand5();
        result = vals[i-1][j-1];
    }
    return result;
}

How does it work? Think of it like this: imagine printing out this double-dimension array on paper, tacking it up to a dart board and randomly throwing darts at it. If you hit a non-zero value, it's a statistically random value between 1 and 7, since there are an equal number of non-zero values to choose from. If you hit a zero, just keep throwing the dart until you hit a non-zero. That's what this code is doing: the i and j indexes randomly select a location on the dart board, and if we don't get a good result, we keep throwing darts.

就像亚当说的,在最坏的情况下,它可以一直运行下去,但从统计上看,最坏的情况永远不会发生。:)

以下是我的回答:

static struct rand_buffer {
  unsigned v, count;
} buf2, buf3;

void push (struct rand_buffer *buf, unsigned n, unsigned v)
{
  buf->v = buf->v * n + v;
  ++buf->count;
}

#define PUSH(n, v)  push (&buf##n, n, v)

int rand16 (void)
{
  int v = buf2.v & 0xf;
  buf2.v >>= 4;
  buf2.count -= 4;
  return v;
}

int rand9 (void)
{
  int v = buf3.v % 9;
  buf3.v /= 9;
  buf3.count -= 2;
  return v;
}

int rand7 (void)
{
  if (buf3.count >= 2) {
    int v = rand9 ();

    if (v < 7)
      return v % 7 + 1;

    PUSH (2, v - 7);
  }

  for (;;) {
    if (buf2.count >= 4) {
      int v = rand16 ();

      if (v < 14) {
        PUSH (2, v / 7);
        return v % 7 + 1;
      }

      PUSH (2, v - 14);
    }

    // Get a number between 0 & 25
    int v = 5 * (rand5 () - 1) + rand5 () - 1;

    if (v < 21) {
      PUSH (3, v / 7);
      return v % 7 + 1;
    }

    v -= 21;
    PUSH (2, v & 1);
    PUSH (2, v >> 1);
  }
}

它比其他的稍微复杂一点,但我相信它最小化了对rand5的调用。与其他解决方案一样,它有小概率会循环很长时间。

假设rand(n)在这里表示“从0到n-1均匀分布的随机整数”,下面是使用Python的randint的代码示例,它具有这种效果。它只使用randint(5)和常量来产生randint(7)的效果。其实有点傻

from random import randint
sum = 7
while sum >= 7:
    first = randint(0,5)   
    toadd = 9999
    while toadd>1:
        toadd = randint(0,5)
    if toadd:
        sum = first+5
    else:
        sum = first

assert 7>sum>=0 
print sum

只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:

$num = 0;
$possibilities = 1;

sub rand7
{
  while( $possibilities < 7 )
  {
    $num = $num * 5 + int(rand(5));
    $possibilities *= 5;
  }
  my $result = $num % 7;
  $num = int( $num / 7 );
  $possibilities /= 7;
  return $result;
}