给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:
abstract class RNG {
def apply(): Int
}
class Random5 extends RNG {
val rng = new scala.util.Random
var count = 0
def apply() = { count += 1 ; rng.nextInt(5) }
}
class FiveSevener(five: RNG) {
val sevens = new Array[Int](9)
var nsevens = 0
val to9 = 40353607;
val to8 = 5764801;
val to7 = 823543;
def loadSevens(value: Int, count: Int) {
nsevens = 0;
var remaining = value;
while (nsevens < count) {
sevens(nsevens) = remaining % 7
remaining /= 7
nsevens += 1
}
}
def loadSevens {
var fivepow11 = 0;
var i=0
while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
fivepow11 -= to9
if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
fivepow11 -= to8
if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
else loadSevens
}
def apply() = {
if (nsevens==0) loadSevens
nsevens -= 1
sevens(nsevens)
}
}
如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:
scala> val five = new Random5
five: Random5 = Random5@e9c592
scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423
scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)
scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000
scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)
scala> five.count
res1: Int = 125902876
分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。
其他回答
下面是一个利用c++ 11特性的答案
#include <functional>
#include <iostream>
#include <ostream>
#include <random>
int main()
{
std::random_device rd;
unsigned long seed = rd();
std::cout << "seed = " << seed << std::endl;
std::mt19937 engine(seed);
std::uniform_int_distribution<> dist(1, 5);
auto rand5 = std::bind(dist, engine);
const int n = 20;
for (int i = 0; i != n; ++i)
{
std::cout << rand5() << " ";
}
std::cout << std::endl;
// Use a lambda expression to define rand7
auto rand7 = [&rand5]()->int
{
for (int result = 0; ; result = 0)
{
// Take advantage of the fact that
// 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
// So we only have to discard one out of every 15625 numbers generated.
// Generate a 6-digit number in base 5
for (int i = 0; i != 6; ++i)
{
result = 5 * result + (rand5() - 1);
}
// result is in the range [0, 15625)
if (result == 15625 - 1)
{
// Discard this number
continue;
}
// We now know that result is in the range [0, 15624), a range that can
// be divided evenly into 7 buckets guaranteeing uniformity
result /= 2232;
return 1 + result;
}
};
for (int i = 0; i != n; ++i)
{
std::cout << rand7() << " ";
}
std::cout << std::endl;
return 0;
}
这是我想到的答案,但这些复杂的答案让我认为这是完全错误的/:))
import random
def rand5():
return float(random.randint(0,5))
def rand7():
random_val = rand5()
return float(random.randint((random_val-random_val),7))
print rand7()
就是这样,均匀分布,零rand5调用。
def rand7:
seed += 1
if seed >= 7:
seed = 0
yield seed
需要事先播种。
产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。
编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)
int rand5()
{
return (rand() % 5) + 1;
}
int rand25()
{
return (5 * (rand5() - 1) + rand5());
}
int rand625()
{
return (25 * (rand25() - 1) + rand25());
}
int rand7()
{
return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}
为什么这行不通?除了对rand5()的额外调用之外?
i = rand5() + rand5() + (rand5() - 1) //Random number between 1 and 14
i = i % 7 + 1;