给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
以下是我的发现:
Random5产生1~5的范围,随机分布 如果我们运行3次并将它们加在一起,我们将得到3~15个随机分布的范围 在3~15范围内执行算术 (3~15) - 1 = (2~14) (2~14)/2 = (1~7)
然后我们得到1~7的范围,这是我们正在寻找的Random7。
其他回答
这是我在看过别人的答案后得出的最简单的答案:
def r5tor7():
while True:
cand = (5 * r5()) + r5()
if cand < 27:
return cand
Cand在[6,27]范围内,如果r5()的可能结果是均匀分布的,则可能结果是均匀分布的。你可以用下面的代码来测试我的答案:
from collections import defaultdict
def r5_outcome(n):
if not n:
yield []
else:
for i in range(1, 6):
for j in r5_outcome(n-1):
yield [i] + j
def test_r7():
d = defaultdict(int)
for x in r5_outcome(2):
s = sum([x[i] * 5**i for i in range(len(x))])
if s < 27:
d[s] += 1
print len(d), d
R5_outcome(2)生成r5()结果的所有可能组合。我使用与解决方案代码中相同的筛选器进行测试。你可以看到所有的结果都是相等的,因为它们有相同的值。
这是我的,它试图从多个rand5()函数调用中重新创建Math.random(),通过使用“加权分数”(?)重新构造一个单位间隔(Math.random()的输出范围)。然后使用这个随机单位间隔产生一个1到7之间的随机整数:
function rand5(){
return Math.floor(Math.random()*5)+1;
}
function rand7(){
var uiRandom=0;
var div=1;
for(var i=0; i<7; i++){
div*=5;
var term=(rand5()-1)/div;
uiRandom+=term;
}
//return uiRandom;
return Math.floor(uiRandom*7)+1;
}
解释一下:我们取一个0-4之间的随机整数(只是rand5()-1),然后将每个结果乘以1/ 5,1 / 25,1 /125,…然后把它们加起来。这类似于二元加权分数的工作原理;相反,我认为我们将其称为五(以5为底)加权分数:产生一个从0 - 0.999999作为一系列(1/5)^n项的数字。
修改函数以获取任何输入/输出随机整数范围应该是简单的。上面的代码可以在重写为闭包时进行优化。
或者,我们也可以这样做:
function rand5(){
return Math.floor(Math.random()*5)+1;
}
function rand7(){
var buffer=[];
var div=1;
for (var i=0; i<7; i++){
buffer.push((rand5()-1).toString(5));
div*=5;
}
var n=parseInt(buffer.join(""),5);
var uiRandom=n/div;
//return uiRandom;
return Math.floor(uiRandom*7)+1;
}
我们不需要费力地构造一个五进制(以5为基数)加权分数,而是实际地构造一个五进制数,并将其转化为一个分数(0—0.9999…和前面一样),然后从那里计算随机的1- 7位数字。
上面的结果(代码片段#2:运行3次,每次100,000次调用):
1: 14263; 2: 14414; 3: 14249; 4: 14109; 5: 14217; 6: 14361; 7: 14387 1: 14205; 2: 14394; 3: 14238; 4: 14187; 5: 14384; 6: 14224; 7: 14368 1: 14425; 2: 14236; 3: 14334; 4: 14232; 5: 14160; 6: 14320; 7: 14293
假设rand(n)在这里表示“从0到n-1均匀分布的随机整数”,下面是使用Python的randint的代码示例,它具有这种效果。它只使用randint(5)和常量来产生randint(7)的效果。其实有点傻
from random import randint
sum = 7
while sum >= 7:
first = randint(0,5)
toadd = 9999
while toadd>1:
toadd = randint(0,5)
if toadd:
sum = first+5
else:
sum = first
assert 7>sum>=0
print sum
面对这么复杂的答案,我觉得自己很蠢。
为什么不能:
int random1_to_7()
{
return (random1_to_5() * 7) / 5;
}
?
这个问题的主要概念是关于正态分布的,这里提供了一个简单的递归解决这个问题的方法
假设我们已经在我们的作用域中有rand5():
def rand7():
# twoway = 0 or 1 in the same probability
twoway = None
while not twoway in (1, 2):
twoway = rand5()
twoway -= 1
ans = rand5() + twoway * 5
return ans if ans in range(1,8) else rand7()
解释
我们可以把这个程序分成两个部分:
循环rand5()直到我们找到1或2,这意味着我们有1/2的概率在变量中有1或2 复合ans by rand5() + twoway * 5,这正是rand10()的结果,如果这不符合我们的需要(1~7),然后我们再次运行rand7。
附注:我们不能在第二部分直接运行while循环,因为双向的每个概率都需要是单独的。
但是有一个权衡,因为第一部分中的while循环和return语句中的递归,这个函数不能保证执行时间,它实际上是无效的。
结果
我做了一个简单的测试来观察我的答案的分布。
result = [ rand7() for x in xrange(777777) ]
ans = {
1: 0,
2: 0,
3: 0,
4: 0,
5: 0,
6: 0,
7: 0,
}
for i in result:
ans[i] += 1
print ans
它给了
{1: 111170, 2: 110693, 3: 110651, 4: 111260, 5: 111197, 6: 111502, 7: 111304}
因此,我们可以知道这个答案是正态分布。
简单的答案
如果你不关心这个函数的执行时间,下面是一个基于我上面给出的答案的简化答案:
def rand7():
ans = rand5() + (rand5()-1) * 5
return ans if ans < 8 else rand7()
这增加了大于8的值的概率,但这可能是这个问题的最短答案。