给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
下面是一个利用c++ 11特性的答案
#include <functional>
#include <iostream>
#include <ostream>
#include <random>
int main()
{
std::random_device rd;
unsigned long seed = rd();
std::cout << "seed = " << seed << std::endl;
std::mt19937 engine(seed);
std::uniform_int_distribution<> dist(1, 5);
auto rand5 = std::bind(dist, engine);
const int n = 20;
for (int i = 0; i != n; ++i)
{
std::cout << rand5() << " ";
}
std::cout << std::endl;
// Use a lambda expression to define rand7
auto rand7 = [&rand5]()->int
{
for (int result = 0; ; result = 0)
{
// Take advantage of the fact that
// 5**6 = 15625 = 15624 + 1 = 7 * (2232) + 1.
// So we only have to discard one out of every 15625 numbers generated.
// Generate a 6-digit number in base 5
for (int i = 0; i != 6; ++i)
{
result = 5 * result + (rand5() - 1);
}
// result is in the range [0, 15625)
if (result == 15625 - 1)
{
// Discard this number
continue;
}
// We now know that result is in the range [0, 15624), a range that can
// be divided evenly into 7 buckets guaranteeing uniformity
result /= 2232;
return 1 + result;
}
};
for (int i = 0; i != n; ++i)
{
std::cout << rand7() << " ";
}
std::cout << std::endl;
return 0;
}
其他回答
这是我想到的答案,但这些复杂的答案让我认为这是完全错误的/:))
import random
def rand5():
return float(random.randint(0,5))
def rand7():
random_val = rand5()
return float(random.randint((random_val-random_val),7))
print rand7()
Here is a solution that tries to minimize the number of calls to rand5() while keeping the implementation simple and efficient; in particular, it does not require arbitrary large integers unlike Adam Rosenfield’s second answer. It exploits the fact that 23/19 = 1.21052... is a good rational approximation to log(7)/log(5) = 1.20906..., thus we can generate 19 random elements of {1,...,7} out of 23 random elements of {1,...,5} by rejection sampling with only a small rejection probability. On average, the algorithm below takes about 1.266 calls to rand5() for each call to rand7(). If the distribution of rand5() is uniform, so is rand7().
uint_fast64_t pool;
int capacity = 0;
void new_batch (void)
{
uint_fast64_t r;
int i;
do {
r = 0;
for (i = 0; i < 23; i++)
r = 5 * r + (rand5() - 1);
} while (r >= 11398895185373143ULL); /* 7**19, a bit less than 5**23 */
pool = r;
capacity = 19;
}
int rand7 (void)
{
int r;
if (capacity == 0)
new_batch();
r = pool % 7;
pool /= 7;
capacity--;
return r + 1;
}
为什么不简单一点呢?
int random7() {
return random5() + (random5() % 3);
}
由于取模,在这个解中得到1和7的几率较低,然而,如果你只是想要一个快速和可读的解,这是一种方法。
上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。
R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})
为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:
0, 0, 0 --> 0 . . 1, 1, 1 --> 7
现在要从R8生成R7,我们只需再次运行R7,如果它返回7:
int R7() {
do {
x = R8();
} while (x > 6)
return x;
}
迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。
只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:
$num = 0;
$possibilities = 1;
sub rand7
{
while( $possibilities < 7 )
{
$num = $num * 5 + int(rand(5));
$possibilities *= 5;
}
my $result = $num % 7;
$num = int( $num / 7 );
$possibilities /= 7;
return $result;
}