给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

你需要的函数是rand1_7(),我写了rand1_5(),这样你就可以测试它并绘制它。

import numpy
def rand1_5():
    return numpy.random.randint(5)+1

def rand1_7():
    q = 0
    for i in xrange(7):  q+= rand1_5()
    return q%7 + 1

其他回答

这个解决方案不浪费任何熵,并给出了范围内第一个可用的真正随机数。随着每一次迭代,得不到答案的概率可证明地降低了。在N次迭代中得到答案的概率是0到max (5^N)之间的随机数小于该范围内7的最大倍数(max-max%7)的概率。必须迭代至少两次。但这对所有解都是成立的。

int random7() {
  range = 1;
  remainder = 0;

  while (1) {
    remainder = remainder * 5 + random5() - 1;
    range = range * 5;

    limit = range - (range % 7);
    if (remainder < limit) return (remainder % 7) + 1;

    remainder = remainder % 7;
    range = range % 7;
  }
}

数值上等价于:

r5=5;
num=random5()-1;
while (1) {
   num=num*5+random5()-1;
   r5=r5*5;
   r7=r5-r5%7;
   if (num<r7) return num%7+1;
}

第一个代码以模形式计算。第二个代码只是简单的数学。或者我在某个地方犯了错误。: -)

这里似乎没有提到的另一个答案:

int rand7() {
  int r = 7 / 2;
  for (int i = 0; i < 28; i++)
    r = ((rand5() - 1) * 7 + r) / 5;
  return r + 1;
}

在每次迭代中,r是一个0到6之间的随机值。它被追加(以7为基数)到一个0到4(包括4)之间的随机值,结果除以5,得到一个0到6(包括6)范围内的新随机值。R开始时有很大的偏差(R = 3是非常有偏差的!),但每次迭代都将偏差除以5。

这种方法不是完全均匀的;然而,偏差是微乎其微的。数量级为1/(2**64)这种方法的重要之处在于它具有恒定的执行时间(假设rand5()也具有恒定的执行时间)。理论上不需要担心一个不走运的调用可能永远迭代地选择坏值。


此外,还有一个讽刺的回答(有意无意,它已经被覆盖了):

1-5已经在1-7的范围内,因此下面是一个有效的实现:

int rand7() {
  return rand5();
}

问题没有要求均匀分布。

function rand7() {
    while (true) { //lowest base 5 random number > 7 reduces memory
        int num = (rand5()-1)*5 + rand5()-1;
    if (num < 21)  // improves performance
        return 1 + num%7;
    }
}

Python代码:

from random import randint
def rand7():
    while(True):
        num = (randint(1, 5)-1)*5 + randint(1, 5)-1
        if num < 21:
                return 1 + num%7

100000次运行的测试分布:

>>> rnums = []
>>> for _ in range(100000):
    rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}

Python:有一个简单的两行答案,它使用空间代数和模量的组合。这不是直观的。我对它的解释令人困惑,但却是正确的。

知道5*7=35 7/5 = 1余数为2。如何保证余数之和始终为0?5*[7/5 = 1余数2]——> 35/5 = 7余数0

想象一下,我们有一条丝带,缠在一根周长为7的杆子上。丝带需要35个单位才能均匀地缠绕。随机选择7个色带片段len=[1…5]。忽略换行的有效长度与将rand5()转换为rand7()的方法相同。

import numpy as np
import pandas as pd
# display is a notebook function FYI
def rand5(): ## random uniform int [1...5]
    return np.random.randint(1,6)

n_trials = 1000
samples = [rand5() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=True))
# 4    0.2042
# 5    0.2041
# 2    0.2010
# 1    0.1981
# 3    0.1926
# dtype: float64
    
def rand7(): # magic algebra
    x = sum(rand5() for _ in range(7))
    return x%7 + 1

samples = [rand7() for _ in range(n_trials)]

display(pd.Series(samples).value_counts(normalize=False))
# 6    1475
# 2    1475
# 3    1456
# 1    1423
# 7    1419
# 4    1393
# 5    1359
# dtype: int64
    
df = pd.DataFrame([
    pd.Series([rand7() for _ in range(n_trials)]).value_counts(normalize=True)
    for _ in range(1000)
])
df.describe()
#      1    2   3   4   5   6   7
# count 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000 1000.000000
# mean  0.142885    0.142928    0.142523    0.142266    0.142704    0.143048    0.143646
# std   0.010807    0.011526    0.010966    0.011223    0.011052    0.010983    0.011153
# min   0.112000    0.108000    0.101000    0.110000    0.100000    0.109000    0.110000
# 25%   0.135000    0.135000    0.135000    0.135000    0.135000    0.135000    0.136000
# 50%   0.143000    0.142000    0.143000    0.142000    0.143000    0.142000    0.143000
# 75%   0.151000    0.151000    0.150000    0.150000    0.150000    0.150000    0.151000
# max   0.174000    0.181000    0.175000    0.178000    0.189000    0.176000    0.179000

这是我的,它试图从多个rand5()函数调用中重新创建Math.random(),通过使用“加权分数”(?)重新构造一个单位间隔(Math.random()的输出范围)。然后使用这个随机单位间隔产生一个1到7之间的随机整数:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var uiRandom=0;
  var div=1;
  for(var i=0; i<7; i++){
    div*=5;
    var term=(rand5()-1)/div;
    uiRandom+=term;
  }
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

解释一下:我们取一个0-4之间的随机整数(只是rand5()-1),然后将每个结果乘以1/ 5,1 / 25,1 /125,…然后把它们加起来。这类似于二元加权分数的工作原理;相反,我认为我们将其称为五(以5为底)加权分数:产生一个从0 - 0.999999作为一系列(1/5)^n项的数字。

修改函数以获取任何输入/输出随机整数范围应该是简单的。上面的代码可以在重写为闭包时进行优化。


或者,我们也可以这样做:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var buffer=[];
  var div=1;
  for (var i=0; i<7; i++){
    buffer.push((rand5()-1).toString(5));
    div*=5;
  }
  var n=parseInt(buffer.join(""),5);
  var uiRandom=n/div;
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

我们不需要费力地构造一个五进制(以5为基数)加权分数,而是实际地构造一个五进制数,并将其转化为一个分数(0—0.9999…和前面一样),然后从那里计算随机的1- 7位数字。

上面的结果(代码片段#2:运行3次,每次100,000次调用):

1: 14263; 2: 14414; 3: 14249; 4: 14109; 5: 14217; 6: 14361; 7: 14387 1: 14205; 2: 14394; 3: 14238; 4: 14187; 5: 14384; 6: 14224; 7: 14368 1: 14425; 2: 14236; 3: 14334; 4: 14232; 5: 14160; 6: 14320; 7: 14293