给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个怎么样

rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2

不确定这是均匀分布的。有什么建议吗?

其他回答

function rand7() {
    while (true) { //lowest base 5 random number > 7 reduces memory
        int num = (rand5()-1)*5 + rand5()-1;
    if (num < 21)  // improves performance
        return 1 + num%7;
    }
}

Python代码:

from random import randint
def rand7():
    while(True):
        num = (randint(1, 5)-1)*5 + randint(1, 5)-1
        if num < 21:
                return 1 + num%7

100000次运行的测试分布:

>>> rnums = []
>>> for _ in range(100000):
    rnums.append(rand7())
>>> {n:rnums.count(n) for n in set(rnums)}
{1: 15648, 2: 15741, 3: 15681, 4: 15847, 5: 15642, 6: 15806, 7: 15635}

因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:


int i;
do
{
  i = 5 * (rand5() - 1) + rand5();  // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;  // result is now uniformly random between 1 and 7

这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。

(我剽窃了亚当·罗森菲尔德的答案,使其运行速度提高了7%左右。)

假设rand5()返回分布相等的{0,1,2,3,4}中的一个,目标是返回分布相等的{0,1,2,3,4,5,6}。

int rand7() {
  i = 5 * rand5() + rand5();
  max = 25;
  //i is uniform among {0 ... max-1}
  while(i < max%7) {
    //i is uniform among {0 ... (max%7 - 1)}
    i *= 5;
    i += rand5(); //i is uniform {0 ... (((max%7)*5) - 1)}
    max %= 7;
    max *= 5; //once again, i is uniform among {0 ... max-1}
  }
  return(i%7);
}

我们在跟踪这个循环在变量max中所能产生的最大值。如果到目前为止的结果在max%7和max-1之间,那么结果将均匀分布在该范围内。如果不是,则使用余数,余数是0到max%7-1之间的随机数,然后再次调用rand()来生成一个新的数字和一个新的max。然后我们重新开始。

编辑:在这个方程中,期望调用rand5()的次数是x:

x =  2     * 21/25
   + 3     *  4/25 * 14/20
   + 4     *  4/25 *  6/20 * 28/30
   + 5     *  4/25 *  6/20 *  2/30 * 7/10
   + 6     *  4/25 *  6/20 *  2/30 * 3/10 * 14/15
   + (6+x) *  4/25 *  6/20 *  2/30 * 3/10 *  1/15
x = about 2.21 calls to rand5()

如果我们考虑尝试给出最有效答案的附加约束,即给定一个长度为m(1-5)的均匀分布整数的输入流I,输出一个长度为m(1-7)的均匀分布整数的流O,长度为L(m)。

最简单的分析方法是将流I和O分别视为5元数和7元数。这是通过主答案的思想来实现的,即取流a1, a2, a3,…- > a1 + a2 + 5 * 5 ^ 2 * a3 + . .流O也是如此。

然后如果我们取长度为m的输入流的一段,选n s.t, 5^m-7^n=c,其中c>0,且尽可能小。然后有一个从长度为m的输入流到1到5^m的整数的统一映射,还有一个从1到7^n的整数到长度为n的输出流的统一映射,当映射的整数超过7^n时,我们可能不得不从输入流中丢失一些情况。

这就给出了L(m)的值约为m (log5/log7)也就是。82米。

上述分析的难点是方程5^m-7^n=c,它不容易精确求解,而在1到5^m的均匀值超过7^n的情况下,我们失去了效率。

问题是如何接近m (log5/log7)的最佳可能值。例如,当这个数字接近一个整数时,我们能否找到一种方法来实现这个精确的整数值输出?

如果5^m-7^n=c,那么从输入流中,我们有效地生成了一个从0到(5^m)-1的均匀随机数,并且不使用任何高于7^n的值。但是,这些值可以被保存并再次使用。它们有效地生成了从1到5^m-7^n的统一数字序列。所以我们可以尝试使用这些,并将它们转换成7位数,这样我们就可以创建更多的输出值。

如果我们让T7(X)是由大小为X的均匀输入导出的随机(1-7)整数的输出序列的平均长度,并假设5^m=7^n0+7^n1+7^n2+…+ 7 ^ nr + s, s < 7。

那么T7(5^m)=n0x7^n0/5^m + ((5^m-7^n0)/5^m) T7(5^m-7^n0)因为我们有一个无长度序列,概率为7^n0/5^m,残差长度为5^m-7^n0,概率为(5^m-7^n0)/5^m)。

如果我们一直代入,我们得到:

T7(5^m) = n0x7^n0/5^m + n1x7^n1/5^m + ... + nrx7^nr/5^m  = (n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/5^m

因此

L(m)=T7(5^m)=(n0x7^n0 + n1x7^n1 + ... + nrx7^nr)/(7^n0+7^n1+7^n2+...+7^nr+s)

另一种说法是:

If 5^m has 7-ary representation `a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r
Then L(m) = (a1*7 + 2a2*7^2 + 3a3*7^3+...+rar*7^r)/(a0+a1*7 + a2*7^2 + a3*7^3+...+ar*7^r)

最好的情况是上面的原始情况,即5^m=7^n+s,其中s<7。

然后机械师》(5 ^ m) = nx (7 ^ n) / (7 ^ n + s) = o (n + 1) = m (Log5 / Log7) + o(1)美国之前。

最坏的情况是我们只能找到k和s.t 5^m = kx7+s。

Then T7(5^m) = 1x(k.7)/(k.7+s) = 1+o(1)

其他情况介于两者之间。看看对于很大的m,我们能做得多好,也就是说,我们能多好地得到误差项,这将是很有趣的:

T7(5^m) = m (Log5/Log7)+e(m)

一般来说,似乎不可能实现e(m)=o(1)但希望我们可以证明e(m)=o(m)。

整个问题取决于5^m的7位数字对不同m值的分布。

我相信有很多理论涵盖了这一点,我可能会在某个时候看一看并报告。

首先,我在1点上移动ramdom5() 6次,得到7个随机数。 其次,将7个数相加得到公和。 第三,除法的余数是7。 最后加1,得到从1到7的结果。 这个方法给出了在1到7的范围内获得数字的相等概率,除了1。1的概率略高。

public int random7(){
    Random random = new Random();
    //function (1 + random.nextInt(5)) is given
    int random1_5 = 1 + random.nextInt(5); // 1,2,3,4,5
    int random2_6 = 2 + random.nextInt(5); // 2,3,4,5,6
    int random3_7 = 3 + random.nextInt(5); // 3,4,5,6,7
    int random4_8 = 4 + random.nextInt(5); // 4,5,6,7,8
    int random5_9 = 5 + random.nextInt(5); // 5,6,7,8,9
    int random6_10 = 6 + random.nextInt(5); //6,7,8,9,10
    int random7_11 = 7 + random.nextInt(5); //7,8,9,10,11

    //sumOfRandoms is between 28 and 56
    int sumOfRandoms = random1_5 + random2_6 + random3_7 + 
                       random4_8 + random5_9 + random6_10 + random7_11;
    //result is number between 0 and 6, and
    //equals 0 if sumOfRandoms = 28 or 35 or 42 or 49 or 56 , 5 options
    //equals 1 if sumOfRandoms = 29 or 36 or 43 or 50, 4 options
    //equals 2 if sumOfRandoms = 30 or 37 or 44 or 51, 4 options
    //equals 3 if sumOfRandoms = 31 or 38 or 45 or 52, 4 options
    //equals 4 if sumOfRandoms = 32 or 39 or 46 or 53, 4 options
    //equals 5 if sumOfRandoms = 33 or 40 or 47 or 54, 4 options
    //equals 6 if sumOfRandoms = 34 or 41 or 48 or 55, 4 options
    //It means that the probabilities of getting numbers between 0 and 6 are almost equal.
    int result = sumOfRandoms % 7;
    //we should add 1 to move the interval [0,6] to the interval [1,7]
    return 1 + result;
}