给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。

public class RandomUnif {

    public static final int BASE_NUMBER = 5;

    private static Random rand = new Random();

    /** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
    public static int randomBASE() {
        return rand.nextInt(BASE_NUMBER);
    }

    /** returns uniform integer in the range 0..n-1 using randomBASE() */
    public static int randomUnif(int n) {
        int rand, factor;
        if( n <= 1 ) return 0;
        else if( n == BASE_NUMBER ) return randomBASE();
        if( n < BASE_NUMBER ) {
            factor = BASE_NUMBER / n;
            do
                rand = randomBASE() / factor;
            while(rand >= n);
            return rand;
        } else {
            factor = (n - 1) / BASE_NUMBER + 1;
            do {
                rand = factor * randomBASE() + randomUnif(factor);
            } while(rand >= n);
            return rand;
        }
    }
}

不是特别高效,但一般和紧凑。对基生成器的均值调用:

 n  calls
 2  1.250 
 3  1.644 
 4  1.252 
 5  1.000 
 6  3.763 
 7  3.185 
 8  2.821 
 9  2.495 
10  2.250 
11  3.646 
12  3.316 
13  3.060 
14  2.853 
15  2.650 
16  2.814 
17  2.644 
18  2.502 
19  2.361 
20  2.248 
21  2.382 
22  2.277 
23  2.175 
24  2.082 
25  2.000 
26  5.472 
27  5.280 
28  5.119 
29  4.899 

其他回答

package CareerCup;

public class RangeTransform {
 static int counter = (int)(Math.random() * 5 + 1);

 private int func() {
  return (int) (Math.random() * 5 + 1);
 }

 private int getMultiplier() {
  return counter % 5 + 1;
 }

 public int rangeTransform() {
  counter++;
  int count = getMultiplier();
  int mult = func() + 5 * count;
  System.out.println("Mult is : " + 5 * count);
  return (mult) % 7 + 1;
 }

 /**
  * @param args
  */
 public static void main(String[] args) {
  // TODO Auto-generated method stub
  RangeTransform rangeTransform = new RangeTransform();
  for (int i = 0; i < 35; i++)
   System.out.println("Val is : " + rangeTransform.rangeTransform());
 }
}

这个怎么样

rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2

不确定这是均匀分布的。有什么建议吗?

因为1/7是一个以5为底的无限小数,所以没有(完全正确的)解可以在常数时间内运行。一个简单的解决方案是使用拒绝抽样,例如:


int i;
do
{
  i = 5 * (rand5() - 1) + rand5();  // i is now uniformly random between 1 and 25
} while(i > 21);
// i is now uniformly random between 1 and 21
return i % 7 + 1;  // result is now uniformly random between 1 and 7

这个循环的预期运行时间为25/21 = 1.19次迭代,但是永远循环的概率非常小。

这里我们使用约定的rand(n) -> [0, n - 1]

从我读到的许多答案中,它们要么提供了一致性,要么提供了暂停保证,但不能同时提供(adam rosenfeld的第二个答案可能)。

然而,这样做是可能的。我们基本上有这样的分布:

这给[0-6]上的分布留下了一个漏洞:5和6没有 发生的概率。想象一下,现在我们试图通过移动 概率分布和求和。

事实上,我们可以把初始分布平移1,然后 重复将得到的分布与移位的初始分布相加 2,然后3,以此类推,直到7,不包括在内(我们涵盖了整个范围)。 如下图所示。颜色的顺序,对应 步骤,是蓝色->绿色->青色->白色->品红->黄色->红色。

因为每个插槽由7个移位分布中的5个覆盖(移位从 0到6),因为我们假设随机数是独立于1的 Ran5()呼叫另一个,我们获得

p(x) = 5 / 35 = 1 / 7       for all x in [0, 6]

这意味着,给定来自ran5()的7个独立随机数,我们可以 计算一个在[0-6]范围内具有均匀概率的随机数。 实际上是ran5()概率 分布甚至不需要均匀,只要样本是均匀的 独立(所以每次试验的分布保持不变) 同样,这也适用于5和7之外的其他数字。

这为我们提供了以下python函数:

def rand_range_transform(rands):
    """
    returns a uniform random number in [0, len(rands) - 1]
    if all r in rands are independent random numbers from the same uniform distribution
    """
    return sum((x + i) for i, x in enumerate(rands)) % len(rands) # a single modulo outside the sum is enough in modulo arithmetic

可以这样使用:

rand5 = lambda : random.randrange(5)

def rand7():
    return rand_range_transform([rand5() for _ in range(7)])

如果我们调用rand7() 70000次,我们可以得到:

max: 6 min: 0 mean: 2.99711428571 std: 2.00194697049
0:  10019
1:  10016
2:  10071
3:  10044
4:  9775
5:  10042
6:  10033

这很好,尽管远非完美。事实上,我们的一个假设是 在这个实现中很可能是false:我们使用一个PRNG,因此,结果 的值依赖于上一个结果。

也就是说,使用一个真正随机的数字来源,输出也应该是 真正随机的。这个算法在任何情况下都终止。

但这是有代价的:我们需要为一个rand7()调用7次rand5() 调用。

int getOneToSeven(){
    int added = 0;
    for(int i = 1; i<=7; i++){
        added += getOneToFive();
    }
    return (added)%7+1;
}