给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

我想到了一个解决这个问题的有趣方法,想和大家分享一下。

function rand7() {

    var returnVal = 4;

    for (var n=0; n<3; n++) {
        var rand = rand5();

        if (rand==1||rand==2){
            returnVal+=1;
        }
        else if (rand==3||rand==4) {
            returnVal-=1;
        }
    }

    return returnVal;
}

我构建了一个测试函数,循环rand7() 10,000次,将所有返回值相加,然后除以10,000。如果rand7()工作正常,我们计算的平均值应该是4 -例如,(1+2+3+4+5+6+7 / 7)= 4。在做了多次测试后,平均值确实是4:)

其他回答

只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:

$num = 0;
$possibilities = 1;

sub rand7
{
  while( $possibilities < 7 )
  {
    $num = $num * 5 + int(rand(5));
    $possibilities *= 5;
  }
  my $result = $num % 7;
  $num = int( $num / 7 );
  $possibilities /= 7;
  return $result;
}
function Rand7
   put 200 into x
   repeat while x > 118
      put ((random(5)-1) * 25) + ((random(5)-1) * 5) + (random(5)-1) into x
   end repeat
   return (x mod 7) + 1
end Rand7

3次调用Rand5,平均125次中只重复6次。

把它想象成一个5x5x5的3D数组,一遍又一遍地填满1到7,还有6个空格。重新滚动空白。rand5调用在该数组中创建一个以5为基数的三位索引。

4D或更高的n维数组的重复次数会更少,但这意味着对rand5函数的更多调用将成为标准。你会在更高维度上得到递减的效率回报。在我看来,三个似乎是一个很好的折衷方案,但我还没有对它们进行测试。它是特定于rand5实现的。

这里允许作业题吗?

这个函数进行粗略的“以5为基数”的数学运算,生成0到6之间的数字。

function rnd7() {
    do {
        r1 = rnd5() - 1;
        do {
            r2=rnd5() - 1;
        } while (r2 > 1);
        result = r2 * 5 + r1;
    } while (result > 6);
    return result + 1;
}

上面引用了一些优雅的算法,但这里有一种方法可以接近它,尽管它可能是迂回的。我假设的值是从0开始的。

R2 =给出小于2的随机数生成器(样本空间= {0,1}) R8 =给出小于8的随机数生成器(样本空间= {0,1,2,3,4,5,6,7})

为了从R2生成R8,您将运行R2三次,并将所有3次运行的组合结果作为3位二进制数使用。下面是R2运行三次时的值范围:

0, 0, 0 --> 0 . . 1, 1, 1 --> 7

现在要从R8生成R7,我们只需再次运行R7,如果它返回7:

int R7() {
  do {
    x = R8();
  } while (x > 6)
  return x;
}

迂回的解决方案是从R5生成R2(就像我们从R8生成R7一样),然后从R2生成R8,然后从R8生成R7。

Here's a solution that fits entirely within integers and is within about 4% of optimal (i.e. uses 1.26 random numbers in {0..4} for every one in {0..6}). The code's in Scala, but the math should be reasonably clear in any language: you take advantage of the fact that 7^9 + 7^8 is very close to 5^11. So you pick an 11 digit number in base 5, and then interpret it as a 9 digit number in base 7 if it's in range (giving 9 base 7 numbers), or as an 8 digit number if it's over the 9 digit number, etc.:

abstract class RNG {
  def apply(): Int
}

class Random5 extends RNG {
  val rng = new scala.util.Random
  var count = 0
  def apply() = { count += 1 ; rng.nextInt(5) }
}

class FiveSevener(five: RNG) {
  val sevens = new Array[Int](9)
  var nsevens = 0
  val to9 = 40353607;
  val to8 = 5764801;
  val to7 = 823543;
  def loadSevens(value: Int, count: Int) {
    nsevens = 0;
    var remaining = value;
    while (nsevens < count) {
      sevens(nsevens) = remaining % 7
      remaining /= 7
      nsevens += 1
    }
  }
  def loadSevens {
    var fivepow11 = 0;
    var i=0
    while (i<11) { i+=1 ; fivepow11 = five() + fivepow11*5 }
    if (fivepow11 < to9) { loadSevens(fivepow11 , 9) ; return }
    fivepow11 -= to9
    if (fivepow11 < to8) { loadSevens(fivepow11 , 8) ; return }
    fivepow11 -= to8
    if (fivepow11 < 3*to7) loadSevens(fivepow11 % to7 , 7)
    else loadSevens
  }
  def apply() = {
    if (nsevens==0) loadSevens
    nsevens -= 1
    sevens(nsevens)
  }
}

如果你将一个测试粘贴到解释器中(实际上是REPL),你会得到:

scala> val five = new Random5
five: Random5 = Random5@e9c592

scala> val seven = new FiveSevener(five)
seven: FiveSevener = FiveSevener@143c423

scala> val counts = new Array[Int](7)
counts: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0)

scala> var i=0 ; while (i < 100000000) { counts( seven() ) += 1 ; i += 1 }
i: Int = 100000000

scala> counts
res0: Array[Int] = Array(14280662, 14293012, 14281286, 14284836, 14287188,
14289332, 14283684)

scala> five.count
res1: Int = 125902876

分布很好,很平坦(在每个箱子中,10^8的1/7大约在10k范围内,就像预期的近似高斯分布一样)。