给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个表达式足以得到1 - 7之间的随机整数

int j = ( rand5()*2 + 4 ) % 7 + 1;

其他回答

这个答案更像是一个从Rand5函数中获得最大熵的实验。因此,T有点不清楚,几乎可以肯定比其他实现慢得多。

假设0-4为均匀分布,0-6为均匀分布:

public class SevenFromFive
{
  public SevenFromFive()
  {
    // this outputs a uniform ditribution but for some reason including it 
    // screws up the output distribution
    // open question Why?
    this.fifth = new ProbabilityCondensor(5, b => {});
    this.eigth = new ProbabilityCondensor(8, AddEntropy);
  } 

  private static Random r = new Random();
  private static uint Rand5()
  {
    return (uint)r.Next(0,5);
  }

  private class ProbabilityCondensor
  {
    private readonly int samples;
    private int counter;
    private int store;
    private readonly Action<bool> output;

    public ProbabilityCondensor(int chanceOfTrueReciprocal,
      Action<bool> output)
    {
      this.output = output;
      this.samples = chanceOfTrueReciprocal - 1;  
    }

    public void Add(bool bit)
    {
      this.counter++;
      if (bit)
        this.store++;   
      if (counter == samples)
      {
        bool? e;
        if (store == 0)
          e = false;
        else if (store == 1)
          e = true;
        else
          e = null;// discard for now       
        counter = 0;
        store = 0;
        if (e.HasValue)
          output(e.Value);
      }
    }
  }

  ulong buffer = 0;
  const ulong Mask = 7UL;
  int bitsAvail = 0;
  private readonly ProbabilityCondensor fifth;
  private readonly ProbabilityCondensor eigth;

  private void AddEntropy(bool bit)
  {
    buffer <<= 1;
    if (bit)
      buffer |= 1;      
    bitsAvail++;
  }

  private void AddTwoBitsEntropy(uint u)
  {
    buffer <<= 2;
    buffer |= (u & 3UL);    
    bitsAvail += 2;
  }

  public uint Rand7()
  {
    uint selection;   
    do
    {
      while (bitsAvail < 3)
      {
        var x = Rand5();
        if (x < 4)
        {
          // put the two low order bits straight in
          AddTwoBitsEntropy(x);
          fifth.Add(false);
        }
        else
        { 
          fifth.Add(true);
        }
      }
      // read 3 bits
      selection = (uint)((buffer & Mask));
      bitsAvail -= 3;     
      buffer >>= 3;
      if (selection == 7)
        eigth.Add(true);
      else
        eigth.Add(false);
    }
    while (selection == 7);   
    return selection;
  }
}

每次调用Rand5添加到缓冲区的比特数目前是4/5 * 2,所以是1.6。 如果包括1/5的概率值,则增加0.05,因此增加1.65,但请参阅代码中的注释,我不得不禁用它。

调用Rand7消耗的比特数= 3 + 1/8 *(3 + 1/8 *(3 + 1/8 *(… 这是3 + 3/8 + 3/64 + 3/512…大约是3.42

通过从7中提取信息,我每次调用回收1/8*1/7位,大约0.018

这使得每次调用的净消耗为3.4比特,这意味着每一次Rand7调用到Rand5的比率为2.125。最优值应该是2.1。

我可以想象这种方法比这里的许多其他方法都要慢得多,除非调用Rand5的代价非常昂贵(比如调用一些外部熵源)。

这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:

// Returns 1-5
var rnd5 = function(){
   return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
  var map = [
     [ 1, 2, 3, 4, 5 ],
     [ 6, 7, 1, 2, 3 ],
     [ 4, 5, 6, 7, 1 ],
     [ 2, 3, 4, 5, 6 ],
     [ 7, 0, 0, 0, 0 ]
  ];
  var result = map[rnd5() - 1][rnd5() - 1];
  if (result > 0) {
    return result;
  }
  lastEdge++;
  if (lastEdge > 7 ) {
    lastEdge = 1;
  }
  return lastEdge;
};

// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;} 
console.log(results)

结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]

js小提琴

就是这样,均匀分布,零rand5调用。

def rand7:
    seed += 1
    if seed >= 7:
        seed = 0
    yield seed

需要事先播种。

产生近似均匀分布的常数时间解。诀窍是625恰好能被7整除当你增加到这个范围时,你可以得到均匀的分布。

编辑:我的错,我算错了,但我不会把它拉下来,以防有人觉得它有用/有趣。毕竟它确实有效……:)

int rand5()
{
    return (rand() % 5) + 1;
}

int rand25()
{ 
    return (5 * (rand5() - 1) + rand5());
}

int rand625()
{
    return (25 * (rand25() - 1) + rand25());
}

int rand7()
{
    return ((625 * (rand625() - 1) + rand625()) - 1) % 7 + 1;
}

我玩了一下,我为这个Rand(7)算法写了“测试环境”。例如,如果你想尝试哪种分布给你的算法,或者需要多少次迭代才能生成所有不同的随机值(对于Rand(7) 1-7),你可以使用它。

我的核心算法是:

return (Rand5() + Rand5()) % 7 + 1;

和亚当·罗森菲尔德的分布一样均匀。(我将其包含在代码片段中)

private static int Rand7WithRand5()
{
    //PUT YOU FAVOURITE ALGORITHM HERE//

    //1. Stackoverflow winner
    int i;
    do
    {
        i = 5 * (Rand5() - 1) + Rand5(); // i is now uniformly random between 1 and 25
    } while (i > 21);
    // i is now uniformly random between 1 and 21
    return i % 7 + 1;

    //My 2 cents
    //return (Rand5() + Rand5()) % 7 + 1;
}

这个“测试环境”可以采用任何Rand(n)算法并测试和评估它(分布和速度)。只需将代码放入“Rand7WithRand5”方法并运行代码片段。

一些观察:

亚当·罗森菲尔德(Adam Rosenfield)的算法并不比我的算法分布得更好。不管怎样,两种算法的分布都很糟糕。 本机Rand7(随机的。Next(1,8))完成,因为它在大约200+迭代中生成了给定间隔内的所有成员,Rand7WithRand5算法的顺序为10k(约30-70k) 真正的挑战不是编写从Rand(5)生成Rand(7)的方法,而是生成几乎均匀分布的值。