给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个答案更像是一个从Rand5函数中获得最大熵的实验。因此,T有点不清楚,几乎可以肯定比其他实现慢得多。

假设0-4为均匀分布,0-6为均匀分布:

public class SevenFromFive
{
  public SevenFromFive()
  {
    // this outputs a uniform ditribution but for some reason including it 
    // screws up the output distribution
    // open question Why?
    this.fifth = new ProbabilityCondensor(5, b => {});
    this.eigth = new ProbabilityCondensor(8, AddEntropy);
  } 

  private static Random r = new Random();
  private static uint Rand5()
  {
    return (uint)r.Next(0,5);
  }

  private class ProbabilityCondensor
  {
    private readonly int samples;
    private int counter;
    private int store;
    private readonly Action<bool> output;

    public ProbabilityCondensor(int chanceOfTrueReciprocal,
      Action<bool> output)
    {
      this.output = output;
      this.samples = chanceOfTrueReciprocal - 1;  
    }

    public void Add(bool bit)
    {
      this.counter++;
      if (bit)
        this.store++;   
      if (counter == samples)
      {
        bool? e;
        if (store == 0)
          e = false;
        else if (store == 1)
          e = true;
        else
          e = null;// discard for now       
        counter = 0;
        store = 0;
        if (e.HasValue)
          output(e.Value);
      }
    }
  }

  ulong buffer = 0;
  const ulong Mask = 7UL;
  int bitsAvail = 0;
  private readonly ProbabilityCondensor fifth;
  private readonly ProbabilityCondensor eigth;

  private void AddEntropy(bool bit)
  {
    buffer <<= 1;
    if (bit)
      buffer |= 1;      
    bitsAvail++;
  }

  private void AddTwoBitsEntropy(uint u)
  {
    buffer <<= 2;
    buffer |= (u & 3UL);    
    bitsAvail += 2;
  }

  public uint Rand7()
  {
    uint selection;   
    do
    {
      while (bitsAvail < 3)
      {
        var x = Rand5();
        if (x < 4)
        {
          // put the two low order bits straight in
          AddTwoBitsEntropy(x);
          fifth.Add(false);
        }
        else
        { 
          fifth.Add(true);
        }
      }
      // read 3 bits
      selection = (uint)((buffer & Mask));
      bitsAvail -= 3;     
      buffer >>= 3;
      if (selection == 7)
        eigth.Add(true);
      else
        eigth.Add(false);
    }
    while (selection == 7);   
    return selection;
  }
}

每次调用Rand5添加到缓冲区的比特数目前是4/5 * 2,所以是1.6。 如果包括1/5的概率值,则增加0.05,因此增加1.65,但请参阅代码中的注释,我不得不禁用它。

调用Rand7消耗的比特数= 3 + 1/8 *(3 + 1/8 *(3 + 1/8 *(… 这是3 + 3/8 + 3/64 + 3/512…大约是3.42

通过从7中提取信息,我每次调用回收1/8*1/7位,大约0.018

这使得每次调用的净消耗为3.4比特,这意味着每一次Rand7调用到Rand5的比率为2.125。最优值应该是2.1。

我可以想象这种方法比这里的许多其他方法都要慢得多,除非调用Rand5的代价非常昂贵(比如调用一些外部熵源)。

其他回答

假设rand(n)在这里表示“从0到n-1均匀分布的随机整数”,下面是使用Python的randint的代码示例,它具有这种效果。它只使用randint(5)和常量来产生randint(7)的效果。其实有点傻

from random import randint
sum = 7
while sum >= 7:
    first = randint(0,5)   
    toadd = 9999
    while toadd>1:
        toadd = randint(0,5)
    if toadd:
        sum = first+5
    else:
        sum = first

assert 7>sum>=0 
print sum

对于范围[1,5]到[1,7],这相当于用一个5面骰子滚动一个7面骰子。

然而,如果不“浪费”随机性(或者在最坏的情况下永远运行),就无法做到这一点,因为7的所有质因数(即7)都不能整除5。因此,最好的方法是使用拒绝抽样来获得任意接近于不“浪费”随机性的结果(例如,将多个5面骰子摇到5^n“足够接近”7的幂)。这个问题的解决方案已经在其他答案中给出了。

更一般地说,用p面骰子掷k面骰子的算法将不可避免地“浪费”随机性(并且在最坏的情况下永远运行),除非“每个质数能除k也能除p”,根据B. Kloeckner的“用骰子模拟骰子”中的引理3。例如,举一个更实际的例子,p是2的幂,k是任意的。在这种情况下,这种“浪费”和无限的运行时间是不可避免的,除非k也是2的幂。

下面使用随机数发生器在{1,2,3,4,5,6,7}上产生均匀分布,在{1,2,3,4,5}上产生均匀分布。代码很混乱,但逻辑很清晰。

public static int random_7(Random rg) {
    int returnValue = 0;
    while (returnValue == 0) {
        for (int i = 1; i <= 3; i++) {
            returnValue = (returnValue << 1) + SimulateFairCoin(rg);
        }
    }
    return returnValue;
}

private static int SimulateFairCoin(Random rg) {
    while (true) {
        int flipOne = random_5_mod_2(rg);
        int flipTwo = random_5_mod_2(rg);

        if (flipOne == 0 && flipTwo == 1) {
            return 0;
        }
        else if (flipOne == 1 && flipTwo == 0) {
            return 1;
        }
    }
}

private static int random_5_mod_2(Random rg) {
    return random_5(rg) % 2;
}

private static int random_5(Random rg) {
    return rg.Next(5) + 1;
}    

这相当于Adam Rosenfield的解决方案,但对一些读者来说可能更清楚一些。它假设rand5()是一个函数,返回1到5范围内的统计随机整数。

int rand7()
{
    int vals[5][5] = {
        { 1, 2, 3, 4, 5 },
        { 6, 7, 1, 2, 3 },
        { 4, 5, 6, 7, 1 },
        { 2, 3, 4, 5, 6 },
        { 7, 0, 0, 0, 0 }
    };

    int result = 0;
    while (result == 0)
    {
        int i = rand5();
        int j = rand5();
        result = vals[i-1][j-1];
    }
    return result;
}

How does it work? Think of it like this: imagine printing out this double-dimension array on paper, tacking it up to a dart board and randomly throwing darts at it. If you hit a non-zero value, it's a statistically random value between 1 and 7, since there are an equal number of non-zero values to choose from. If you hit a zero, just keep throwing the dart until you hit a non-zero. That's what this code is doing: the i and j indexes randomly select a location on the dart board, and if we don't get a good result, we keep throwing darts.

就像亚当说的,在最坏的情况下,它可以一直运行下去,但从统计上看,最坏的情况永远不会发生。:)

int ans = 0;
while (ans == 0) 
{
     for (int i=0; i<3; i++) 
     {
          while ((r = rand5()) == 3){};
          ans += (r < 3) >> i
     }
}