给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。


当前回答

这个解决方案受到了Rob McAfee的启发。 然而,它不需要循环,结果是一个均匀分布:

// Returns 1-5
var rnd5 = function(){
   return parseInt(Math.random() * 5, 10) + 1;
}
// Helper
var lastEdge = 0;
// Returns 1-7
var rnd7 = function () {
  var map = [
     [ 1, 2, 3, 4, 5 ],
     [ 6, 7, 1, 2, 3 ],
     [ 4, 5, 6, 7, 1 ],
     [ 2, 3, 4, 5, 6 ],
     [ 7, 0, 0, 0, 0 ]
  ];
  var result = map[rnd5() - 1][rnd5() - 1];
  if (result > 0) {
    return result;
  }
  lastEdge++;
  if (lastEdge > 7 ) {
    lastEdge = 1;
  }
  return lastEdge;
};

// Test the a uniform distribution
results = {}; for(i=0; i < 700000;i++) { var rand = rnd7(); results[rand] = results[rand] ? results[rand] + 1 : 1;} 
console.log(results)

结果:[1:99560,2:99932,3:100355,4:100262,5:99603,6:100062,7:100226]

js小提琴

其他回答

这个怎么样

rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2

不确定这是均匀分布的。有什么建议吗?

这是我的,它试图从多个rand5()函数调用中重新创建Math.random(),通过使用“加权分数”(?)重新构造一个单位间隔(Math.random()的输出范围)。然后使用这个随机单位间隔产生一个1到7之间的随机整数:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var uiRandom=0;
  var div=1;
  for(var i=0; i<7; i++){
    div*=5;
    var term=(rand5()-1)/div;
    uiRandom+=term;
  }
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

解释一下:我们取一个0-4之间的随机整数(只是rand5()-1),然后将每个结果乘以1/ 5,1 / 25,1 /125,…然后把它们加起来。这类似于二元加权分数的工作原理;相反,我认为我们将其称为五(以5为底)加权分数:产生一个从0 - 0.999999作为一系列(1/5)^n项的数字。

修改函数以获取任何输入/输出随机整数范围应该是简单的。上面的代码可以在重写为闭包时进行优化。


或者,我们也可以这样做:

function rand5(){
  return Math.floor(Math.random()*5)+1;
}
function rand7(){
  var buffer=[];
  var div=1;
  for (var i=0; i<7; i++){
    buffer.push((rand5()-1).toString(5));
    div*=5;
  }
  var n=parseInt(buffer.join(""),5);
  var uiRandom=n/div;
  //return uiRandom;
  return Math.floor(uiRandom*7)+1; 
}

我们不需要费力地构造一个五进制(以5为基数)加权分数,而是实际地构造一个五进制数,并将其转化为一个分数(0—0.9999…和前面一样),然后从那里计算随机的1- 7位数字。

上面的结果(代码片段#2:运行3次,每次100,000次调用):

1: 14263; 2: 14414; 3: 14249; 4: 14109; 5: 14217; 6: 14361; 7: 14387 1: 14205; 2: 14394; 3: 14238; 4: 14187; 5: 14384; 6: 14224; 7: 14368 1: 14425; 2: 14236; 3: 14334; 4: 14232; 5: 14160; 6: 14320; 7: 14293

对于0-7的值,你有以下内容:

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

从左到右,Rand5()有p(1) ={2/ 5,2 / 5,3 /5}。因此,如果我们补这些概率分布(~Rand5()),我们应该能够使用它来生成我们的数字。我稍后会给出解决方案。有人有什么想法吗?

R

rand25() =5*(rand5()-1) + rand5()

rand7() { 
   while(true) {
       int r = rand25();
       if (r < 21) return r%3;         
   }
}

为什么这样做:循环永远运行的概率是0。

这里是我的一般实现,在给定一个范围为[0,B-1]的均匀发生器的情况下,生成范围为[0,N-1]的均匀。

public class RandomUnif {

    public static final int BASE_NUMBER = 5;

    private static Random rand = new Random();

    /** given generator, returns uniform integer in the range 0.. BASE_NUMBER-1
    public static int randomBASE() {
        return rand.nextInt(BASE_NUMBER);
    }

    /** returns uniform integer in the range 0..n-1 using randomBASE() */
    public static int randomUnif(int n) {
        int rand, factor;
        if( n <= 1 ) return 0;
        else if( n == BASE_NUMBER ) return randomBASE();
        if( n < BASE_NUMBER ) {
            factor = BASE_NUMBER / n;
            do
                rand = randomBASE() / factor;
            while(rand >= n);
            return rand;
        } else {
            factor = (n - 1) / BASE_NUMBER + 1;
            do {
                rand = factor * randomBASE() + randomUnif(factor);
            } while(rand >= n);
            return rand;
        }
    }
}

不是特别高效,但一般和紧凑。对基生成器的均值调用:

 n  calls
 2  1.250 
 3  1.644 
 4  1.252 
 5  1.000 
 6  3.763 
 7  3.185 
 8  2.821 
 9  2.495 
10  2.250 
11  3.646 
12  3.316 
13  3.060 
14  2.853 
15  2.650 
16  2.814 
17  2.644 
18  2.502 
19  2.361 
20  2.248 
21  2.382 
22  2.277 
23  2.175 
24  2.082 
25  2.000 
26  5.472 
27  5.280 
28  5.119 
29  4.899