用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!
当前回答
#include<stdio.h>
main()
{
long long unsigned x,y,b,z,e,r,c;
scanf("%llu",&x);
if(x<2)return 0;
scanf("%llu",&y);
if(y<x)return 0;
if(x==2)printf("|2");
if(x%2==0)x+=1;
if(y%2==0)y-=1;
for(b=x;b<=y;b+=2)
{
z=b;e=0;
for(c=2;c*c<=z;c++)
{
if(z%c==0)e++;
if(e>0)z=3;
}
if(e==0)
{
printf("|%llu",z);
r+=1;
}
}
printf("|\n%llu outputs...\n",r);
scanf("%llu",&r);
}
其他回答
I found this solution pretty fast but it comes with consequences, So this is called Fermat's Little Theorem. If we take any number p and put that in (1^p)-1 or (2^p)-2...(n^p)-n likewise and the number we get is divisible by p then it's a prime number. Talking about consequences, it's not 100% right solution. There are some numbers like 341(not prime) it will pass the test with (2^341)-2 but fails on (3^341)-3, so it's called a composite number. We can have two or more checks to make sure they pass all of them. There is one more kind of number which are not prime but also pass all the test case:( 561, 1729 Ramanujan taxi no etc.
好消息是:在前250亿个数字中,只有2183不符合这个要求 的情况。
#include <iostream>
#include <math.h>
using namespace std;
int isPrime(int p)
{
int tc = pow(2, p) - 2;
if (tc % p == 0)
{
cout << p << "is Prime ";
}
else
{
cout << p << "is Not Prime";
}
return 0;
}
int main()
{
int p;
cin >> p;
isPrime(p);
return 0;
}
#include<stdio.h>
main()
{
long long unsigned x,y,b,z,e,r,c;
scanf("%llu",&x);
if(x<2)return 0;
scanf("%llu",&y);
if(y<x)return 0;
if(x==2)printf("|2");
if(x%2==0)x+=1;
if(y%2==0)y-=1;
for(b=x;b<=y;b+=2)
{
z=b;e=0;
for(c=2;c*c<=z;c++)
{
if(z%c==0)e++;
if(e>0)z=3;
}
if(e==0)
{
printf("|%llu",z);
r+=1;
}
}
printf("|\n%llu outputs...\n",r);
scanf("%llu",&r);
}
Rabin-Miller是一个标准的概率质数检验。(你运行K次,输入数字要么肯定是合数,要么可能是素数,误差概率为4-K。(经过几百次迭代,它几乎肯定会告诉你真相)
拉宾·米勒有一个非概率(确定性)的变体。
The Great Internet Mersenne Prime Search (GIMPS) which has found the world's record for largest proven prime (274,207,281 - 1 as of June 2017), uses several algorithms, but these are primes in special forms. However the GIMPS page above does include some general deterministic primality tests. They appear to indicate that which algorithm is "fastest" depends upon the size of the number to be tested. If your number fits in 64 bits then you probably shouldn't use a method intended to work on primes of several million digits.
寻找因素的解决方案:
def divisors(integer):
result = set()
i = 2
j = integer/2
while(i <= j):
if integer % i == 0:
result.add(i)
#it dont need to
result.add(integer//i)
i += 1
j = integer//i
if len(result) > 0:
return f"not prime {sorted(result)}"
else:
return f"{integer} is prime"
—测试---- 导入的时间
start_time = time.time()
print(divisors(180180180180))
print("--- %s seconds ---" % (time.time() - start_time))
——0.06314539909362793秒——
start_time = time.time()
print(divs(180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))
——1.5997519493103027秒——
start_time = time.time()
print(divisors(1827))
print("--- %s seconds ---" % (time.time() - start_time))
——0.0秒——
start_time = time.time()
print(divisors(104729))
print("--- %s seconds ---" % (time.time() - start_time))
——0.0秒——
下面的代码:
def divs(integer):
result = set()
i = 2
j = integer / 2
loops = 0
while (i <= j):
if integer % i == 0:
print(f"loops:{loops}")
return f"{integer} is not a prime"
i += 1
j = integer // i
loops += 1
print(f"loops:{loops}")
return f"{integer} is prime"
——测试——
start_time = time.time()
print(divs(180180180180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))
——0.0秒——
i wrote it today in C,compiled with tcc, figured out during preparation of compititive exams several years back. don't know if anyone already have wrote it alredy. it really fast(but you should decide whether it is fast or not). took one or two minuts to findout about 1,00,004 prime numbers between 10 and 1,00,00,000 on i7 processor with average 32% CPU use. as you know, only those can be prime which have last digit either 1,3,7 or 9 and to check if that number is prime or not, you have to divide that number by previously found prime numbers only. so first take group of four number = {1,3,7,9}, test it by dividing by known prime numbers, if reminder is non zero then number is prime, add it to prime number array. then add 10 to group so it becomes {11,13,17,19} and repeat the process.
#include <stdio.h>
int main() {
int nums[4]={1,3,7,9};
int primes[100000];
primes[0]=2;
primes[1]=3;
primes[2]=5;
primes[3]=7;
int found = 4;
int got = 1;
int m=0;
int upto = 1000000;
for(int i=0;i<upto;i++){
//printf("iteration number: %d\n",i);
for(int j=0;j<4;j++){
m = nums[j]+10;
//printf("m = %d\n",m);
nums[j] = m;
got = 1;
for(int k=0;k<found;k++){
//printf("testing with %d\n",primes[k]);
if(m%primes[k]==0){
got = 0;
//printf("%d failed for %d\n",m,primes[k]);
break;
}
}
if(got==1){
//printf("got new prime: %d\n",m);
primes[found]= m;
found++;
}
}
}
printf("found total %d prime numbers between 1 and %d",found,upto*10);
return 0;
}