用c++找出质数最快的算法是什么?我已经使用了sieve的算法,但我仍然希望它更快!


当前回答

寻找因素的解决方案:

def divisors(integer):
    result = set()
    i = 2
    j = integer/2
    while(i <= j):
        if integer % i == 0:
            result.add(i)
            #it dont need to 
            result.add(integer//i)
        i += 1
        j = integer//i
    if len(result) > 0:
        return f"not  prime {sorted(result)}"
    else:
        return f"{integer} is prime"

—测试---- 导入的时间

start_time = time.time()
print(divisors(180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——0.06314539909362793秒——

start_time = time.time()
print(divs(180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——1.5997519493103027秒——

start_time = time.time()
print(divisors(1827))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

start_time = time.time()
print(divisors(104729))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

下面的代码:

def divs(integer):
    result = set()
    i = 2
    j = integer / 2
    loops = 0
    while (i <= j):
        if integer % i == 0:
            print(f"loops:{loops}")
            return f"{integer} is not a prime"
        i += 1
        j = integer // i
        loops += 1
    print(f"loops:{loops}")
    
    return f"{integer} is prime"

——测试——

start_time = time.time()
print(divs(180180180180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

其他回答

你的问题是判断一个特定的数字是否是质数吗?然后你需要一个质数测试(很简单)。或者你需要一个给定数字之前的所有质数吗?在这种情况下,素筛是很好的(简单,但需要内存)。或者你需要一个数的质因数?这将需要分解(如果你真的想要最有效的方法,对于较大的数字很难)。你看到的数字有多大?16位?32位?更大的吗?

一种聪明而有效的方法是预先计算质数表,并使用位级编码将它们保存在文件中。文件被认为是一个长位向量,而位n表示整数n。如果n是素数,则其位设置为1,否则为0。查找非常快(您可以计算字节偏移量和位掩码),并且不需要在内存中加载文件。

我会让你决定这是不是最快的。

using System;
namespace PrimeNumbers
{

public static class Program
{
    static int primesCount = 0;


    public static void Main()
    {
        DateTime startingTime = DateTime.Now;

        RangePrime(1,1000000);   

        DateTime endingTime = DateTime.Now;

        TimeSpan span = endingTime - startingTime;

        Console.WriteLine("span = {0}", span.TotalSeconds);

    }


    public static void RangePrime(int start, int end)
    {
        for (int i = start; i != end+1; i++)
        {
            bool isPrime = IsPrime(i);
            if(isPrime)
            {
                primesCount++;
                Console.WriteLine("number = {0}", i);
            }
        }
        Console.WriteLine("primes count = {0}",primesCount);
    }



    public static bool IsPrime(int ToCheck)
    {

        if (ToCheck == 2) return true;
        if (ToCheck < 2) return false;


        if (IsOdd(ToCheck))
        {
            for (int i = 3; i <= (ToCheck / 3); i += 2)
            {
                if (ToCheck % i == 0) return false;
            }
            return true;
        }
        else return false; // even numbers(excluding 2) are composite
    }

    public static bool IsOdd(int ToCheck)
    {
        return ((ToCheck % 2 != 0) ? true : false);
    }
}
}

在我使用2.40 GHz处理器的酷睿2 Duo笔记本电脑上,查找并打印1到1,000,000范围内的质数大约需要82秒。它找到了78,498个质数。

寻找因素的解决方案:

def divisors(integer):
    result = set()
    i = 2
    j = integer/2
    while(i <= j):
        if integer % i == 0:
            result.add(i)
            #it dont need to 
            result.add(integer//i)
        i += 1
        j = integer//i
    if len(result) > 0:
        return f"not  prime {sorted(result)}"
    else:
        return f"{integer} is prime"

—测试---- 导入的时间

start_time = time.time()
print(divisors(180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——0.06314539909362793秒——

start_time = time.time()
print(divs(180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——1.5997519493103027秒——

start_time = time.time()
print(divisors(1827))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

start_time = time.time()
print(divisors(104729))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

下面的代码:

def divs(integer):
    result = set()
    i = 2
    j = integer / 2
    loops = 0
    while (i <= j):
        if integer % i == 0:
            print(f"loops:{loops}")
            return f"{integer} is not a prime"
        i += 1
        j = integer // i
        loops += 1
    print(f"loops:{loops}")
    
    return f"{integer} is prime"

——测试——

start_time = time.time()
print(divs(180180180180180180180180))
print("--- %s seconds ---" % (time.time() - start_time))

——0.0秒——

这取决于您的应用程序。这里有一些注意事项:

你需要的仅仅是一些数字是否是质数的信息,你需要所有的质数达到一定的限度,还是你需要(潜在的)所有的质数? 你要处理的数字有多大?

米勒-拉宾和模拟测试只比筛选超过一定规模的数字(我相信大约在几百万左右)的速度快。在这以下,使用试除法(如果你只有几个数字)或筛子会更快。

我总是用这种方法来计算筛子算法后面的质数。

void primelist()
 {
   for(int i = 4; i < pr; i += 2) mark[ i ] = false;
   for(int i = 3; i < pr; i += 2) mark[ i ] = true; mark[ 2 ] = true;
   for(int i = 3, sq = sqrt( pr ); i < sq; i += 2)
       if(mark[ i ])
          for(int j = i << 1; j < pr; j += i) mark[ j ] = false;
  prime[ 0 ] = 2; ind = 1;
  for(int i = 3; i < pr; i += 2)
    if(mark[ i ]) ind++; printf("%d\n", ind);
 }