好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。
这是在c++中四舍五入到一个数字的倍数的正确方法吗?
我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:
int roundUp(int numToRound, int multiple)
{
if(multiple == 0)
{
return numToRound;
}
int roundDown = ( (int) (numToRound) / multiple) * multiple;
int roundUp = roundDown + multiple;
int roundCalc = roundUp;
return (roundCalc);
}
更新:
抱歉,我可能没把意思说清楚。下面是一些例子:
roundUp(7, 100)
//return 100
roundUp(117, 100)
//return 200
roundUp(477, 100)
//return 500
roundUp(1077, 100)
//return 1100
roundUp(52, 20)
//return 60
roundUp(74, 30)
//return 90
我用的是:
template <class _Ty>
inline _Ty n_Align_Up(_Ty n_x, _Ty n_alignment)
{
assert(n_alignment > 0);
//n_x += (n_x >= 0)? n_alignment - 1 : 1 - n_alignment; // causes to round away from zero (greatest absolute value)
n_x += (n_x >= 0)? n_alignment - 1 : -1; // causes to round up (towards positive infinity)
//n_x += (_Ty(-(n_x >= 0)) & n_alignment) - 1; // the same as above, avoids branch and integer multiplication
//n_x += n_alignment - 1; // only works for positive numbers (fastest)
return n_x - n_x % n_alignment; // rounds negative towards zero
}
对于2的幂:
template <class _Ty>
bool b_Is_POT(_Ty n_x)
{
return !(n_x & (n_x - 1));
}
template <class _Ty>
inline _Ty n_Align_Up_POT(_Ty n_x, _Ty n_pot_alignment)
{
assert(n_pot_alignment > 0);
assert(b_Is_POT(n_pot_alignment)); // alignment must be power of two
-- n_pot_alignment;
return (n_x + n_pot_alignment) & ~n_pot_alignment; // rounds towards positive infinity (i.e. negative towards zero)
}
请注意,这两个负值都舍入到0(这意味着所有值都舍入到正无穷),它们都不依赖于有符号溢出(这在C/ c++中未定义)。
这给:
n_Align_Up(10, 100) = 100
n_Align_Up(110, 100) = 200
n_Align_Up(0, 100) = 0
n_Align_Up(-10, 100) = 0
n_Align_Up(-110, 100) = -100
n_Align_Up(-210, 100) = -200
n_Align_Up_POT(10, 128) = 128
n_Align_Up_POT(130, 128) = 256
n_Align_Up_POT(0, 128) = 0
n_Align_Up_POT(-10, 128) = 0
n_Align_Up_POT(-130, 128) = -128
n_Align_Up_POT(-260, 128) = -256
我用的是:
template <class _Ty>
inline _Ty n_Align_Up(_Ty n_x, _Ty n_alignment)
{
assert(n_alignment > 0);
//n_x += (n_x >= 0)? n_alignment - 1 : 1 - n_alignment; // causes to round away from zero (greatest absolute value)
n_x += (n_x >= 0)? n_alignment - 1 : -1; // causes to round up (towards positive infinity)
//n_x += (_Ty(-(n_x >= 0)) & n_alignment) - 1; // the same as above, avoids branch and integer multiplication
//n_x += n_alignment - 1; // only works for positive numbers (fastest)
return n_x - n_x % n_alignment; // rounds negative towards zero
}
对于2的幂:
template <class _Ty>
bool b_Is_POT(_Ty n_x)
{
return !(n_x & (n_x - 1));
}
template <class _Ty>
inline _Ty n_Align_Up_POT(_Ty n_x, _Ty n_pot_alignment)
{
assert(n_pot_alignment > 0);
assert(b_Is_POT(n_pot_alignment)); // alignment must be power of two
-- n_pot_alignment;
return (n_x + n_pot_alignment) & ~n_pot_alignment; // rounds towards positive infinity (i.e. negative towards zero)
}
请注意,这两个负值都舍入到0(这意味着所有值都舍入到正无穷),它们都不依赖于有符号溢出(这在C/ c++中未定义)。
这给:
n_Align_Up(10, 100) = 100
n_Align_Up(110, 100) = 200
n_Align_Up(0, 100) = 0
n_Align_Up(-10, 100) = 0
n_Align_Up(-110, 100) = -100
n_Align_Up(-210, 100) = -200
n_Align_Up_POT(10, 128) = 128
n_Align_Up_POT(130, 128) = 256
n_Align_Up_POT(0, 128) = 0
n_Align_Up_POT(-10, 128) = 0
n_Align_Up_POT(-130, 128) = -128
n_Align_Up_POT(-260, 128) = -256
/// Rounding up 'n' to the nearest multiple of number 'b'.
/// - Not tested for negative numbers.
/// \see http://stackoverflow.com/questions/3407012/
#define roundUp(n,b) ( (b)==0 ? (n) : ( ((n)+(b)-1) - (((n)-1)%(b)) ) )
/// \c test->roundUp().
void test_roundUp() {
// yes_roundUp(n,b) ( (b)==0 ? (n) : ( (n)%(b)==0 ? n : (n)+(b)-(n)%(b) ) )
// yes_roundUp(n,b) ( (b)==0 ? (n) : ( ((n + b - 1) / b) * b ) )
// no_roundUp(n,b) ( (n)%(b)==0 ? n : (b)*( (n)/(b) )+(b) )
// no_roundUp(n,b) ( (n)+(b) - (n)%(b) )
if (true) // couldn't make it work without (?:)
{{ // test::roundUp()
unsigned m;
{ m = roundUp(17,8); } ++m;
assertTrue( 24 == roundUp(17,8) );
{ m = roundUp(24,8); }
assertTrue( 24 == roundUp(24,8) );
assertTrue( 24 == roundUp(24,4) );
assertTrue( 24 == roundUp(23,4) );
{ m = roundUp(23,4); }
assertTrue( 24 == roundUp(21,4) );
assertTrue( 20 == roundUp(20,4) );
assertTrue( 20 == roundUp(19,4) );
assertTrue( 20 == roundUp(18,4) );
assertTrue( 20 == roundUp(17,4) );
assertTrue( 17 == roundUp(17,0) );
assertTrue( 20 == roundUp(20,0) );
}}
}