在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
在Tensorflow中训练一个模型后:
如何拯救训练过的模型? 您以后如何恢复这个保存的模型?
当前回答
在新版本的tensorflow 2.0中,保存/加载模型的过程要容易得多。因为Keras API的实现,一个TensorFlow的高级API。
保存一个模型: 请查阅相关文档以作参考: https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/save_model
tf.keras.models.save_model(model_name, filepath, save_format)
加载一个模型:
https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/models/load_model
model = tf.keras.models.load_model(filepath)
其他回答
你也可以用更简单的方法。
步骤1:初始化所有变量
W1 = tf.Variable(tf.truncated_normal([6, 6, 1, K], stddev=0.1), name="W1")
B1 = tf.Variable(tf.constant(0.1, tf.float32, [K]), name="B1")
Similarly, W2, B2, W3, .....
步骤2:在模型Saver中保存会话并保存它
model_saver = tf.train.Saver()
# Train the model and save it in the end
model_saver.save(session, "saved_models/CNN_New.ckpt")
步骤3:恢复模型
with tf.Session(graph=graph_cnn) as session:
model_saver.restore(session, "saved_models/CNN_New.ckpt")
print("Model restored.")
print('Initialized')
步骤4:检查变量
W1 = session.run(W1)
print(W1)
在不同的python实例中运行时,使用
with tf.Session() as sess:
# Restore latest checkpoint
saver.restore(sess, tf.train.latest_checkpoint('saved_model/.'))
# Initalize the variables
sess.run(tf.global_variables_initializer())
# Get default graph (supply your custom graph if you have one)
graph = tf.get_default_graph()
# It will give tensor object
W1 = graph.get_tensor_by_name('W1:0')
# To get the value (numpy array)
W1_value = session.run(W1)
如果它是一个内部保存的模型,您只需为所有变量指定一个恢复器为
restorer = tf.train.Saver(tf.all_variables())
并使用它来恢复当前会话中的变量:
restorer.restore(self._sess, model_file)
对于外部模型,您需要指定从它的变量名到您的变量名的映射。您可以使用该命令查看模型变量名
python /path/to/tensorflow/tensorflow/python/tools/inspect_checkpoint.py --file_name=/path/to/pretrained_model/model.ckpt
inspect_checkpoint.py脚本可以在`。tensorflow源码的/tensorflow/python/tools文件夹。
为了指定映射,你可以使用我的Tensorflow-Worklab,它包含一组类和脚本来训练和再训练不同的模型。它包括一个再训练ResNet模型的例子,位于这里
模型有两个部分,模型定义,由Supervisor保存为图。模型目录中的PBTXT和张量的数值,保存到检查点文件,如model.ckpt-1003418。
可以使用tf恢复模型定义。import_graph_def,并且使用Saver恢复权重。
然而,Saver使用特殊的集合保存附加到模型Graph的变量列表,并且这个集合没有使用import_graph_def初始化,所以您目前不能同时使用这两者(这在我们的路线图中进行修复)。现在,您必须使用Ryan Sepassi的方法——手动构造具有相同节点名称的图,并使用Saver将权重加载到其中。
(或者,您可以通过使用import_graph_def,手动创建变量和使用tf.add_to_collection(tf.GraphKeys. collection)来破解它。变量,变量)为每个变量,然后使用Saver)
对于张量流2.0,它非常简单
#保存模型 model.save(“path_to_my_model.h5”)
恢复:
new_model = tensorflow.keras.models.load_model('path_to_my_model.h5')
无论你想把模型保存在哪里,
self.saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
...
self.saver.save(sess, filename)
确保你所有的任务。变量有名称,因为您可能希望稍后使用它们的名称来恢复它们。 在你想预测的地方,
saver = tf.train.import_meta_graph(filename)
name = 'name given when you saved the file'
with tf.Session() as sess:
saver.restore(sess, name)
print(sess.run('W1:0')) #example to retrieve by variable name
确保该保护程序在相应的会话中运行。 请记住,如果使用tf.train.latest_checkpoint('./'),那么将只使用最新的检查点。