有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

正如已经指出的,除了null函数可能的例外,不可能有O(1/n)个函数,因为所花费的时间必须接近0。

当然,有一些算法,比如康拉德定义的算法,它们至少在某种意义上应该小于O(1)

def get_faster(list):
    how_long = 1/len(list)
    sleep(how_long)

If you want to investigate these algorithms, you should either define your own asymptotic measurement, or your own notion of time. For example, in the above algorithm, I could allow the use of a number of "free" operations a set amount of times. In the above algorithm, if I define t' by excluding the time for everything but the sleep, then t'=1/n, which is O(1/n). There are probably better examples, as the asymptotic behavior is trivial. In fact, I am sure that someone out there can come up with senses that give non-trivial results.

其他回答

大o符号表示算法与典型运行时不同的最坏情况。证明O(1/n)算法是O(1)算法很简单。根据定义, O(1/n)——> T(n) <= 1/n, for all n >= C > 0 O (1 / n)——> T (n) < = 1 / C,因为1 / n <所有n > = 1 / C = C O(1/n)——> O(1),因为大O符号忽略常数(即C的值无关紧要)

有次线性算法。事实上,Bayer-Moore搜索算法就是一个很好的例子。

我猜小于O(1)是不可能的。算法所花费的任何时间都称为O(1)。但是对于O(1/n)下面的函数呢。(我知道这个解决方案中已经出现了许多变体,但我猜它们都有一些缺陷(不是主要的,它们很好地解释了这个概念)。这里有一个,只是为了方便讨论:

def 1_by_n(n, C = 10):   #n could be float. C could be any positive number
  if n <= 0.0:           #If input is actually 0, infinite loop.
    while True:
      sleep(1)           #or pass
    return               #This line is not needed and is unreachable
  delta = 0.0001
  itr = delta
  while delta < C/n:
    itr += delta

因此,随着n的增加,函数将花费越来越少的时间。此外,如果输入实际为0,则函数将永远返回。

有人可能会说,这将受到机器精度的限制。因此,由于c eit有一个上界,它是O(1)。但我们也可以绕过它,通过在字符串中输入n和C。加法和比较是对字符串进行的。用这个方法,我们可以把n减小到任意小。因此,即使忽略n = 0,函数的上限也是无界的。

我也相信我们不能说运行时间是O(1/n)。我们应该写成O(1 + 1/n)

O(1)仅仅表示“常数时间”。

当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。

诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。

1:假设这个例子的列表长度是静态的

那么这个呢:

void FindRandomInList(list l)
{
    while(1)
    {
        int rand = Random.next();
        if (l.contains(rand))
            return;
    }
}

随着列表大小的增加,程序的预期运行时间会减少。