有没有O(1/n)种算法?
或者其他小于O(1)的数?
有没有O(1/n)种算法?
或者其他小于O(1)的数?
当前回答
正如已经指出的,除了null函数可能的例外,不可能有O(1/n)个函数,因为所花费的时间必须接近0。
当然,有一些算法,比如康拉德定义的算法,它们至少在某种意义上应该小于O(1)
def get_faster(list):
how_long = 1/len(list)
sleep(how_long)
If you want to investigate these algorithms, you should either define your own asymptotic measurement, or your own notion of time. For example, in the above algorithm, I could allow the use of a number of "free" operations a set amount of times. In the above algorithm, if I define t' by excluding the time for everything but the sleep, then t'=1/n, which is O(1/n). There are probably better examples, as the asymptotic behavior is trivial. In fact, I am sure that someone out there can come up with senses that give non-trivial results.
其他回答
是的。
只有一种算法运行时为O(1/n),即“空”算法。
对于O(1/n)的算法来说,这意味着它渐进地执行的步骤比由单个指令组成的算法少。如果对于所有n个> n0,它执行的步骤少于1步,则对于这n个,它必须完全不包含任何指令。由于检查' If n > n0'至少需要1条指令,因此对于所有n个,它必须不包含任何指令。
总结: 唯一的算法是O(1/n)是空算法,不包含任何指令。
如果解决方案存在,它可以在常数时间=立即准备和访问。例如,如果您知道排序查询是针对倒序的,则使用LIFO数据结构。然后,假设选择了适当的模型(LIFO),数据就已经排序了。
O(1)仅仅表示“常数时间”。
当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。
诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。
1:假设这个例子的列表长度是静态的
我猜小于O(1)是不可能的。算法所花费的任何时间都称为O(1)。但是对于O(1/n)下面的函数呢。(我知道这个解决方案中已经出现了许多变体,但我猜它们都有一些缺陷(不是主要的,它们很好地解释了这个概念)。这里有一个,只是为了方便讨论:
def 1_by_n(n, C = 10): #n could be float. C could be any positive number
if n <= 0.0: #If input is actually 0, infinite loop.
while True:
sleep(1) #or pass
return #This line is not needed and is unreachable
delta = 0.0001
itr = delta
while delta < C/n:
itr += delta
因此,随着n的增加,函数将花费越来越少的时间。此外,如果输入实际为0,则函数将永远返回。
有人可能会说,这将受到机器精度的限制。因此,由于c eit有一个上界,它是O(1)。但我们也可以绕过它,通过在字符串中输入n和C。加法和比较是对字符串进行的。用这个方法,我们可以把n减小到任意小。因此,即使忽略n = 0,函数的上限也是无界的。
我也相信我们不能说运行时间是O(1/n)。我们应该写成O(1 + 1/n)
这不可能。Big-O的定义是不大于不平等:
A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)
所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。