有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

你不能低于O(1)但是O(k) k小于N是可能的。我们称之为次线性时间算法。在某些问题中,次线性时间算法只能给出特定问题的近似解。然而,有时,一个近似解就可以了,可能是因为数据集太大了,或者计算所有数据的计算成本太高了。

其他回答

你不能低于O(1)但是O(k) k小于N是可能的。我们称之为次线性时间算法。在某些问题中,次线性时间算法只能给出特定问题的近似解。然而,有时,一个近似解就可以了,可能是因为数据集太大了,或者计算所有数据的计算成本太高了。

inline void O0Algorithm() {}

如果不管输入数据如何,答案都是一样的,那么你就有一个O(0)算法。

或者换句话说——在提交输入数据之前,答案就已经知道了 -这个功能可以优化-所以O(0)

这不可能。Big-O的定义是不大于不平等:

A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)

所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。

如果根本不运行函数(NOOP)呢?或者使用固定值。这算吗?