有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

我不知道算法,但复杂度小于O(1)出现在随机算法中。实际上,o(1)(小o)小于o(1)这种复杂性通常出现在随机算法中。例如,如你所说,当某个事件的概率为1/n阶时,他们用o(1)表示。或者当他们想说某件事发生的概率很高时(例如1 - 1/n),他们用1 - o(1)表示。

其他回答

如果解决方案存在,它可以在常数时间=立即准备和访问。例如,如果您知道排序查询是针对倒序的,则使用LIFO数据结构。然后,假设选择了适当的模型(LIFO),数据就已经排序了。

这不可能。Big-O的定义是不大于不平等:

A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)

所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。

这个问题并不像有些人认为的那样愚蠢。至少在理论上,当我们采用大O符号的数学定义时,像O(1/n)这样的东西是完全合理的:

现在你可以很容易地用g(x)代替1/x……很明显,上面的定义对于某个f仍然成立。

为了估计渐近运行时增长的目的,这是不太可行的……一个有意义的算法不能随着输入的增长而变得更快。当然,你可以构造一个任意的算法来实现这一点,例如下面这个:

def get_faster(list):
    how_long = (1 / len(list)) * 100000
    sleep(how_long)

显然,随着输入大小的增长,这个函数花费的时间更少,至少直到硬件强制的某个限制(数字的精度,睡眠可以等待的最小时间,处理参数的时间等):这个限制将是一个常数下界,因此实际上上面的函数仍然有运行时O(1)。

但实际上,在现实世界中,当输入大小增加时,运行时可能会减少(至少部分减少)。但是请注意,这些算法不会在O(1)以下表现出运行时行为。不过,它们还是很有趣的。以Horspool的非常简单的文本搜索算法为例。在这里,期望运行时将随着搜索模式长度的增加而减少(但是增加草堆长度将再次增加运行时)。

inline void O0Algorithm() {}

有次线性算法。事实上,Bayer-Moore搜索算法就是一个很好的例子。