有没有O(1/n)种算法?

或者其他小于O(1)的数?


当前回答

没有比O(1)小的数 大o符号表示算法的最大复杂度

如果一个算法的运行时间是n³+ n²+ n + 5那么它就是O(n³) 低次在这里根本不重要,因为n ->正无穷,n^2与n^3相比是无关的

同样地,当n -> Inf时,O(1/n)与O(1)相比是不相关的,因此3 + O(1/n)将与O(1)相同,从而使O(1)的计算复杂度最小

其他回答

这不可能。Big-O的定义是不大于不平等:

A(n) = O(B(n))
<=>
exists constants C and n0, C > 0, n0 > 0 such that
for all n > n0, A(n) <= C * B(n)

所以B(n)实际上是最大值,因此如果它随着n的增加而减少,估计不会改变。

在数值分析中,近似算法在近似公差范围内应具有次常数的渐近复杂度。

class Function
{
    public double[] ApproximateSolution(double tolerance)
    {
        // if this isn't sub-constant on the parameter, it's rather useless
    }
}

我不懂数学,但这个概念似乎是寻找一个函数,需要更少的时间,你添加更多的输入?在这种情况下,怎么样:

def f( *args ): 
  if len(args)<1:
    args[1] = 10

当添加可选的第二个参数时,此函数会更快,因为否则必须赋值它。我意识到这不是一个方程,但维基百科页面说大o通常也应用于计算系统。

O(1)仅仅表示“常数时间”。

当你给循环[1]添加一个早期退出时,你(在大O符号中)把一个O(1)算法变成了O(n)算法,但使它更快。

诀窍是一般情况下,常数时间算法是最好的,线性算法比指数算法好,但对于n很小的时候,指数算法可能更快。

1:假设这个例子的列表长度是静态的

O(1/n)并不小于O(1)这基本上意味着你拥有的数据越多,算法运行得越快。假设你有一个数组,如果它小于10100个元素就填充它,如果多于10100个元素就什么都不做。这个当然不是O(1/n),而是O(-n):)太糟糕了,O大符号不允许负数。