我需要在半径为R的圆内生成一个均匀随机点。

我意识到,只要在区间[0…2π),且在区间(0…R)我最终会有更多的点指向中心,因为对于两个给定的半径,小半径内的点会比大半径内的点彼此更接近。

我在这里找到了一篇关于这个的博客文章,但我不明白他的推理。我认为这是正确的,但我真的很想知道他从哪里得到(2/R2)×r以及他如何得到最终解。


更新:在发布这个问题7年之后,关于平方根算法背后的数学问题,我仍然没有得到一个令人满意的答案。所以我花了一天时间自己写了一个答案。链接到我的答案。


当前回答

如何在半径为R的圆内随机生成一个点:

r = R * sqrt(random())
theta = random() * 2 * PI

(假设random()均匀地给出0到1之间的值)

如果你想把它转换成笛卡尔坐标,你可以做到

x = centerX + r * cos(theta)
y = centerY + r * sin(theta)

为什么sqrt(随机())?

让我们看看sqrt(random())之前的数学运算。为简单起见,假设我们是在单位圆上工作,即R = 1。

点与点之间的平均距离应该是相同的,不管我们看的距离中心有多远。这意味着,例如,观察一个周长为2的圆的周长,我们应该找到的点的数量是周长为1的圆周长上点的数量的两倍。


                

由于圆的周长(2πr)随r线性增长,因此随机点的数量应该随r线性增长。换句话说,期望的概率密度函数(PDF)线性增长。由于PDF的面积应该等于1,最大半径是1,我们有


                

所以我们知道随机值的理想密度应该是什么样的。 现在:当我们只有一个0到1之间的均匀随机值时,我们如何生成这样一个随机值?

我们用了一个叫做反变换采样的技巧

从PDF中创建累积分布函数(CDF) 沿着y = x镜像 将得到的函数应用于0到1之间的统一值。

听起来复杂吗?让我插入一段带有小侧轨的引语来传达直觉:

Suppose we want to generate a random point with the following distribution:                  That is 1/5 of the points uniformly between 1 and 2, and 4/5 of the points uniformly between 2 and 3. The CDF is, as the name suggests, the cumulative version of the PDF. Intuitively: While PDF(x) describes the number of random values at x, CDF(x) describes the number of random values less than x. In this case the CDF would look like:                  To see how this is useful, imagine that we shoot bullets from left to right at uniformly distributed heights. As the bullets hit the line, they drop down to the ground:                  See how the density of the bullets on the ground correspond to our desired distribution! We're almost there! The problem is that for this function, the y axis is the output and the x axis is the input. We can only "shoot bullets from the ground straight up"! We need the inverse function! This is why we mirror the whole thing; x becomes y and y becomes x:                  We call this CDF-1. To get values according to the desired distribution, we use CDF-1(random()).

所以,回到生成随机半径值,其中PDF等于2x。

步骤1:创建CDF: 由于我们处理的是实数,CDF表示为PDF的积分。

CDF(x) = ∫ 2x = x2

步骤2:沿y = x镜像CDF:

从数学上讲,这可以归结为交换x和y并求解y:

CDF: y = x2 交换:x = y2 解:y =√x CDF-1: y =√x

步骤3:将得到的函数应用于0到1之间的统一值

CDF-1(random()) =√random()

这就是我们要推导的:-)

其他回答

这取决于你对"均匀随机"的定义。这是一个微妙的点,你可以在这里的wiki页面上阅读更多关于它的内容:http://en.wikipedia.org/wiki/Bertrand_paradox_%28probability%29,在这里同样的问题,对“均匀随机”给出不同的解释会给出不同的答案!

根据你如何选择这些点,分布可能会有所不同,即使它们在某种意义上是均匀随机的。

It seems like the blog entry is trying to make it uniformly random in the following sense: If you take a sub-circle of the circle, with the same center, then the probability that the point falls in that region is proportional to the area of the region. That, I believe, is attempting to follow the now standard interpretation of 'uniformly random' for 2D regions with areas defined on them: probability of a point falling in any region (with area well defined) is proportional to the area of that region.

圆中的面积元是dA=rdr*dphi。这个额外的因子r破坏了你随机选择r和的想法。虽然phi分布平坦,但r不是,而是在1/r内平坦(也就是说,你更有可能击中边界而不是“靶心”)。

为了生成在圆上均匀分布的点从平面分布中选取r从1/r分布中选取。

或者使用Mehrdad提出的蒙特卡罗方法。

EDIT

要在1/r中选择一个随机的r,你可以从区间[1/ r,无穷]中选择一个随机的x,并计算r=1/x。R以1/ R为单位平坦分布。

为了计算一个随机的,从区间[0,1]中选择一个随机的x,并计算=2*pi*x。

1)在-1和1之间随机选择一个X。

var X:Number = Math.random() * 2 - 1;

2)利用圆公式,在X和半径为1的情况下,计算Y的最大值和最小值:

var YMin:Number = -Math.sqrt(1 - X * X);
var YMax:Number = Math.sqrt(1 - X * X);

3)在这两个极端之间随机选择一个Y:

var Y:Number = Math.random() * (YMax - YMin) + YMin;

4)将您的位置和半径值合并到最终值中:

var finalX:Number = X * radius + pos.x;
var finalY:Number = Y * radois + pos.y;

我不知道这个问题是否还有新的答案,但我自己碰巧也遇到过同样的问题。我试着跟自己“讲道理”寻找解决办法,我找到了一个。这可能和一些人在这里提出的建议是一样的,但不管怎样,它是这样的:

in order for two elements of the circle's surface to be equal, assuming equal dr's, we must have dtheta1/dtheta2 = r2/r1. Writing expression of the probability for that element as P(r, theta) = P{ r1< r< r1 + dr, theta1< theta< theta + dtheta1} = f(r,theta)*dr*dtheta1, and setting the two probabilities (for r1 and r2) equal, we arrive to (assuming r and theta are independent) f(r1)/r1 = f(r2)/r2 = constant, which gives f(r) = c*r. And the rest, determining the constant c follows from the condition on f(r) being a PDF.

我曾经用过这个方法: 这可能是完全未优化的(即它使用了一个点数组,所以它不能用于大圆圈),但它提供了足够的随机分布。如果你愿意,你可以跳过矩阵的创建,直接绘制。方法是随机化矩形中落在圆内的所有点。

bool[,] getMatrix(System.Drawing.Rectangle r) {
    bool[,] matrix = new bool[r.Width, r.Height];
    return matrix;
}

void fillMatrix(ref bool[,] matrix, Vector center) {
    double radius = center.X;
    Random r = new Random();
    for (int y = 0; y < matrix.GetLength(0); y++) {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            double distance = (center - new Vector(x, y)).Length;
            if (distance < radius) {
                matrix[x, y] = r.NextDouble() > 0.5;
            }
        }
    }

}

private void drawMatrix(Vector centerPoint, double radius, bool[,] matrix) {
    var g = this.CreateGraphics();

    Bitmap pixel = new Bitmap(1,1);
    pixel.SetPixel(0, 0, Color.Black);

    for (int y = 0; y < matrix.GetLength(0); y++)
    {
        for (int x = 0; x < matrix.GetLength(1); x++)
        {
            if (matrix[x, y]) {
                g.DrawImage(pixel, new PointF((float)(centerPoint.X - radius + x), (float)(centerPoint.Y - radius + y)));
            }
        }
    }

    g.Dispose();
}

private void button1_Click(object sender, EventArgs e)
{
    System.Drawing.Rectangle r = new System.Drawing.Rectangle(100,100,200,200);
    double radius = r.Width / 2;
    Vector center = new Vector(r.Left + radius, r.Top + radius);
    Vector normalizedCenter = new Vector(radius, radius);
    bool[,] matrix = getMatrix(r);
    fillMatrix(ref matrix, normalizedCenter);
    drawMatrix(center, radius, matrix);
}