我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

有一种方法可以把这个问题简化为一个简单的子问题。

解释分为两部分,算法和算法的原因 提供最优解决方案。没有第二个,第一个就说不通了,所以我 从为什么开始。

如果你想轰炸矩形(假设一个大矩形-还没有边缘情况) 你可以看到,只有这样才能减少空心矩形上的正方形 周长到0的意思是炸毁周长或者炸毁的空心矩形 就在外围的方块里。我称周长为图层1,其中的矩形为图层2。

一个重要的观点是,没有点轰炸层1,因为 你这样做得到的“爆炸半径”总是包含在爆炸半径内 另一个来自第2层的正方形。你应该很容易就能说服自己。

所以,我们可以把问题简化为找到一个最优的方法来炸开周长,然后我们可以重复这个过程,直到所有的平方都为0。

但当然了,如果有爆炸的可能,并不总能找到最优解 以一种不太理想的方式远离周边,但通过使用X个额外的炸弹制造 用>X炸弹减少内层的问题。如果我们调用 第一层,如果我们在第二层的某个地方放置一个额外的X炸弹(只是 在第1层内,我们可以减少之后轰炸第2层的努力吗 X ?换句话说,我们必须证明我们可以贪心化简外部 周长。

但是,我们知道我们可以贪婪。因为第2层的炸弹永远不会更多 有效减少第2层到0比战略上放置炸弹在第3层。和 因为和之前一样的原因-总有一个炸弹我们可以放在第3层 将影响第2层的每一个方块,炸弹放在第2层可以。所以,它可以 永远不要伤害我们的贪婪(在这个意义上的贪婪)。

所以,我们要做的就是找到最优的方法,通过轰炸将许可值降为0 下一个内层。

我们永远不会因为先把角落炸到0而受伤,因为只有内层的角落可以到达,所以我们真的没有选择(并且,任何可以到达角落的周长炸弹的爆炸半径都包含在内层角落的爆炸半径中)。

一旦我们这样做了,与0角相邻的周长上的正方形只能由内层的2个正方形到达:

0       A       B

C       X       Y

D       Z

在这一点上,周长实际上是一个封闭的1维环,因为任何炸弹都会减少3个相邻的正方形。除了角落附近的一些奇怪之处——X可以“击中”A、B、C和D。

Now we can't use any blast radius tricks - the situation of each square is symmetric, except for the weird corners, and even there no blast radius is a subset of another. Note that if this were a line (as Colonel Panic discusses) instead of a closed loop the solution is trivial. The end points must be reduced to 0, and it never harms you to bomb the points adjacent to the end points, again because the blast radius is a superset. Once you have made your endpoint 0, you still have a new endpoint, so repeat (until the line is all 0).

所以,如果我们可以优化地将层中的单个正方形减少到0,我们就有了一个算法(因为我们已经切断了循环,现在有了一条带有端点的直线)。我相信轰炸与最小值相邻的正方形(给你2个选项),这样在最小值的2个正方形内的最大值就是最小值(你可能不得不分割你的轰炸来管理这一点)将是最优的,但我还没有证明。

其他回答

没有必要将问题转化为线性子问题。

相反,使用简单的贪婪启发式,即从最大的角落开始轰炸角落。

在给定的例子中,有四个角,{2,1,6,4}。对于每个角落,没有比轰炸单元格对角线更好的移动了,所以我们知道我们的第一个2+1+6+4 = 13次轰炸必须在这些对角线单元格中。在完成轰炸之后,我们会得到一个新的矩阵:

2 3 4 7 1      0 1 1 6 0      0 1 1 6 0     1 1 6 0     0 0 5     0 0 0 
1 5 2 6 2      0 3 0 5 1      0 3 0 5 1  => 1 0 4 0  => 0 0 3  => 0 0 0  
4 3 4 2 1      2 1 1 1 0      2 1 1 1 0     0 0 0 0     0 0 0     0 0 3  
2 1 2 4 1  =>  2 1 2 4 1  =>  2 1 2 4 1     0 0 3 0     0 0 3      
3 1 3 4 1      0 0 0 0 0      0 0 0 0 0 
2 1 4 3 2      0 0 0 0 0      0 0 0 0 0 
6 9 1 6 4      0 3 0 2 0      0 0 0 0 0 

在前13次爆炸之后,我们使用启发式方法通过3次爆炸消除3 0 2。现在,我们有两个新的角,在第四行{2,1}。我们炸了那些,再炸3次。我们现在已经将矩阵化简为4 * 4。有一个角落,左上角。我们搞砸了。现在我们还有两个角,{5,3}。因为5是最大的角,我们首先轰炸5个角,然后最后轰炸另一个角的3。总数是13+3+3+1+5+3 = 28。

生成最慢但最简单且无错误的算法,并测试所有有效的可能性。这种情况非常简单(因为结果与炸弹放置的顺序无关)。

创建N次应用bomp的函数 为所有炸弹放置/炸弹计数可能性创建循环(当矩阵==0时停止) 记住最好的解决方案。 在循环的最后,你得到了最好的解决方案 不仅是炸弹的数量,还有它们的位置

代码可以是这样的:

void copy(int **A,int **B,int m,int n)
    {
    for (int i=0;i<m;i++)
     for (int j=0;i<n;j++)
       A[i][j]=B[i][j];
    }

bool is_zero(int **M,int m,int n)
    {
    for (int i=0;i<m;i++)
     for (int j=0;i<n;j++)
      if (M[i][j]) return 0;
    return 1;
    }

void drop_bomb(int **M,int m,int n,int i,int j,int N)
    {
    int ii,jj;
    ii=i-1; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i-1; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i-1; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i  ; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j-1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j  ; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    ii=i+1; jj=j+1; if ((ii>=0)&&(ii<m)&&(jj>=0)&&(jj<n)&&(M[ii][jj])) { M[ii][jj]-=N; if (M[ii][jj]<0) M[ii][jj]=0; }
    }

void solve_problem(int **M,int m,int n)
    {
    int i,j,k,max=0;
    // you probably will need to allocate matrices P,TP,TM yourself instead of this:
    int P[m][n],min;             // solution: placement,min bomb count
    int TM[m][n],TP[m][n],cnt;   // temp
    for (i=0;i<m;i++)            // max count of bomb necessary to test
     for (j=0;j<n;j++)
      if (max<M[i][j]) max=M[i][j];
    for (i=0;i<m;i++)            // reset solution
     for (j=0;j<n;j++)
      P[i][j]=max;
    min=m*n*max; 
        copy(TP,P,m,n); cnt=min;

    for (;;)  // generate all possibilities
        {
        copy(TM,M,m,n);
        for (i=0;i<m;i++)   // test solution
         for (j=0;j<n;j++)
          drop_bomb(TM,m,n,TP[i][j]);
        if (is_zero(TM,m,n))// is solution
         if (min>cnt)       // is better solution -> store it
            {
            copy(P,TP,m,n); 
            min=cnt;    
            }
        // go to next possibility
        for (i=0,j=0;;)
            {
            TP[i][j]--;
            if (TP[i][j]>=0) break;
            TP[i][j]=max;
                 i++; if (i<m) break;
            i=0; j++; if (j<n) break;
            break;
            }
        if (is_zero(TP,m,n)) break;
        }
    //result is in P,min
    }

这可以通过很多方式进行优化,……最简单的是用M矩阵重置解,但你需要改变最大值和TP[][]递减代码

这将是一个贪婪的方法:

计算一个阶为n X m的“score”矩阵,其中score[i][j]是如果位置(i,j)被炸毁,则矩阵中各点的总扣除额。(一个点的最高分数是9分,最低分数是0分) 逐行移动,找到并选择第一个得分最高的位置(例如(i,j))。 炸弹(i, j)。增加炸弹数量。 如果原矩阵的所有元素都不为零,则转到1。

但我怀疑这是否是最佳解决方案。

编辑:

我上面提到的贪心方法,虽然有效,但很可能不能给我们最优的解决方案。所以我想应该添加一些DP的元素。

我想我们可以同意,在任何时候,具有最高“分数”(分数[I][j] =总扣分,如果(I,j)被炸)的位置之一必须被瞄准。从这个假设开始,下面是新的方法:

NumOfBombs(M):(返回所需的最小炸弹数量)

给定一个矩阵M (n X M),如果M中的所有元素都为0,则返回0。 计算“分数”矩阵M。 设k个不同的位置P1 P2…Pk (1 <= k <= n*m),为m中得分最高的位置。 return (1 + min(NumOfBombs(M1), NumOfBombs(M2),…, NumOfBombs(Mk)) M1, M2,……,Mk是我们轰炸位置P1, P2,…, Pk。

此外,如果我们想在此基础上破坏位置的顺序,我们必须跟踪“min”的结果。

为了尽量减少炸弹的数量,我们必须最大化每个炸弹的效果。要做到这一点,每一步我们都要选择最好的目标。对于每一个点,它和它的八个邻居的总和,可以被用作轰炸这一点的效率量。这将提供接近最佳的炸弹序列。

UPD:我们还应该考虑到零的数量,因为轰炸它们效率很低。事实上,问题是最小化击中零的数量。但我们不知道每一步如何使我们更接近这个目标。我同意这个问题是np完全的。我建议用贪婪的方法,它会给出一个接近真实的答案。

这是部分答案,我试图找到一个下界和上界,可能是炸弹的数量。

在3x3和更小的板上,解决方案通常是编号最大的单元。

在大于4x4的板中,第一个明显的下界是角的和:

*2* 3  7 *1*
 1  5  6  2
 2  1  3  2
*6* 9  6 *4*

无论你如何安排炸弹,都不可能用少于2+1+6+4=13个炸弹来清除这个4x4板。

在其他回答中已经提到,将炸弹放置在第二个角落以消除角落并不比将炸弹放置在角落本身更糟糕,所以考虑到棋盘:

*2* 3  4  7 *1*
 1  5  2  6  2
 4  3  4  2  1
 2  1  2  4  1
 3  1  3  4  1
 2  1  4  3  2
*6* 9  1  6 *4*

我们可以通过在第二个角上放置炸弹来将角归零,从而得到一个新的板:

 0  1  1  6  0
 0  3  0  5  1
 2  1  1  1  0
 2  1  2  4  1
 0  0  0  0  0
 0  0  0  0  0
 0  3  0  2  0

到目前为止一切顺利。我们需要13枚炸弹才能清空角落。

现在观察下面标记的数字6、4、3和2:

 0  1  1 *6* 0
 0  3  0  5  1
 2  1  1  1  0
*2* 1  2 *4* 1
 0  0  0  0  0
 0  0  0  0  0
 0 *3* 0  2  0

我们无法使用一枚炸弹去轰炸任何两个细胞,所以最小炸弹数量增加了6+4+3+2,所以再加上我们用来清除角落的炸弹数量,我们得到这张地图所需的最小炸弹数量变成了28枚炸弹。用少于28个炸弹是不可能清除这张地图的,这是这张地图的下限。

可以用贪心算法建立上界。其他答案表明,贪婪算法产生的解决方案使用28个炸弹。因为我们之前已经证明了没有一个最优解可以拥有少于28个炸弹,所以28个炸弹确实是一个最优解。

当贪心和我上面提到的寻找最小界的方法不收敛时,我猜你必须回去检查所有的组合。

求下界的算法如下:

选一个数值最大的元素,命名为P。 将所有距离P和P本身两步远的单元格标记为不可拾取。 将P添加到最小值列表中。 重复步骤1,直到所有单元格都不可拾取。 对最小值列表求和得到下界。