我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这是另一个想法:

让我们先给黑板上的每个空格分配一个权重,计算在那里扔炸弹会减少多少数字。如果这个空间有一个非零数,它就得到一个点,如果它的相邻空间有一个非零数,它就得到一个额外的点。如果这是一个1000 * 1000的网格,我们为这100万个空间中的每一个都分配了权重。

然后根据权重对列表中的空格进行排序,并轰炸权重最高的空格。可以这么说,这是我们最大的收获。

在此之后,更新每个空间的重量是受炸弹的影响。这是你轰炸的空间,和它相邻的空间,以及它们相邻的空间。换句话说,任何空间的价值都可能因为爆炸而减少为零,或者相邻空间的价值减少为零。

然后,根据权重重新排序列表空间。由于轰炸只改变了一小部分空间的权重,因此不需要使用整个列表,只需在列表中移动这些空间。

轰炸新的最高权重空间,并重复上述步骤。

这保证了每次轰炸都能减少尽可能多的空格(基本上,它会击中尽可能少的已经为零的空格),所以这是最优的,除非它们的权重是相同的。所以你可能需要做一些回溯跟踪,当有一个平局的顶部重量。不过,只有最高重量的领带重要,其他领带不重要,所以希望没有太多的回溯。

Edit: Mysticial's counterexample below demonstrates that in fact this isn't guaranteed to be optimal, regardless of ties in weights. In some cases reducing the weight as much as possible in a given step actually leaves the remaining bombs too spread out to achieve as high a cummulative reduction after the second step as you could have with a slightly less greedy choice in the first step. I was somewhat mislead by the notion that the results are insensitive to the order of bombings. They are insensitive to the order in that you could take any series of bombings and replay them from the start in a different order and end up with the same resulting board. But it doesn't follow from that that you can consider each bombing independently. Or, at least, each bombing must be considered in a way that takes into account how well it sets up the board for subsequent bombings.

其他回答

使用分支和定界的数学整数线性规划

As it has already been mentioned, this problem can be solved using integer linear programming (which is NP-Hard). Mathematica already has ILP built in. "To solve an integer linear programming problem Mathematica first solves the equational constraints, reducing the problem to one containing inequality constraints only. Then it uses lattice reduction techniques to put the inequality system in a simpler form. Finally, it solves the simplified optimization problem using a branch-and-bound method." [see Constrained Optimization Tutorial in Mathematica.. ]

我写了下面的代码,利用ILP库的Mathematica。它的速度快得惊人。

solveMatrixBombProblem[problem_, r_, c_] := 
 Module[{}, 
  bombEffect[x_, y_, m_, n_] := 
   Table[If[(i == x || i == x - 1 || i == x + 1) && (j == y || 
        j == y - 1 || j == y + 1), 1, 0], {i, 1, m}, {j, 1, n}];
  bombMatrix[m_, n_] := 
   Transpose[
    Table[Table[
      Part[bombEffect[(i - Mod[i, n])/n + 1, Mod[i, n] + 1, m, 
        n], (j - Mod[j, n])/n + 1, Mod[j, n] + 1], {j, 0, 
       m*n - 1}], {i, 0, m*n - 1}]];
  X := x /@ Range[c*r];
  sol = Minimize[{Total[X], 
     And @@ Thread[bombMatrix[r, c].X >= problem] && 
      And @@ Thread[X >= 0] && Total[X] <= 10^100 && 
      Element[X, Integers]}, X];
  Print["Minimum required bombs = ", sol[[1]]];
  Print["A possible solution = ", 
   MatrixForm[
    Table[x[c*i + j + 1] /. sol[[2]], {i, 0, r - 1}, {j, 0, 
      c - 1}]]];]

对于问题中提供的示例:

solveMatrixBombProblem[{2, 3, 4, 7, 1, 1, 5, 2, 6, 2, 4, 3, 4, 2, 1, 2, 1, 2, 4, 1, 3, 1, 3, 4, 1, 2, 1, 4, 3, 2, 6, 9, 1, 6, 4}, 7, 5]

输出

对于那些用贪婪算法读这篇文章的人

在下面这个10x10的问题上试试你的代码:

5   20  7   1   9   8   19  16  11  3  
17  8   15  17  12  4   5   16  8   18  
4   19  12  11  9   7   4   15  14  6  
17  20  4   9   19  8   17  2   10  8  
3   9   10  13  8   9   12  12  6   18  
16  16  2   10  7   12  17  11  4   15  
11  1   15  1   5   11  3   12  8   3  
7   11  16  19  17  11  20  2   5   19  
5   18  2   17  7   14  19  11  1   6  
13  20  8   4   15  10  19  5   11  12

这里用逗号分隔:

5, 20, 7, 1, 9, 8, 19, 16, 11, 3, 17, 8, 15, 17, 12, 4, 5, 16, 8, 18, 4, 19, 12, 11, 9, 7, 4, 15, 14, 6, 17, 20, 4, 9, 19, 8, 17, 2, 10, 8, 3, 9, 10, 13, 8, 9, 12, 12, 6, 18, 16, 16, 2, 10, 7, 12, 17, 11, 4, 15, 11, 1, 15, 1, 5, 11, 3, 12, 8, 3, 7, 11, 16, 19, 17, 11, 20, 2, 5, 19, 5, 18, 2, 17, 7, 14, 19, 11, 1, 6, 13, 20, 8, 4, 15, 10, 19, 5, 11, 12

对于这个问题,我的解决方案包含208个炸弹。这里有一个可能的解决方案(我能够在大约12秒内解决这个问题)。

作为一种测试Mathematica产生结果的方法,看看你的贪婪算法是否能做得更好。

这个贪婪的解决方案似乎是正确的:

正如评论中指出的那样,它在2D中会失败。但也许你可以改进它。

1 d: 如果至少有2个数字,你不需要从最左边的那个开始射击,因为从第二个开始射击并不差。所以射到第二个,而第一个不是0,因为你必须这么做。移动到下一个单元格。不要忘记最后一个单元格。

c++代码:

void bombs(vector<int>& v, int i, int n){
    ans += n;
    v[i] -= n;
    if(i > 0)
        v[i - 1] -= n;
    if(i + 1< v.size())
        v[i + 1] -= n;
}

void solve(vector<int> v){
    int n = v.size();
    for(int i = 0; i < n;++i){
        if(i != n - 1){
            bombs(v, i + 1, v[i]);
        }
        else
            bombs(v, i, v[i])
    }
}

对于2D: 再次强调:你不需要在第一行拍摄(如果有第二行)。所以要射到第二个。解决第一行的1D任务。(因为你需要使它为空)。下降。别忘了最后一排。

有一种方法可以把这个问题简化为一个简单的子问题。

解释分为两部分,算法和算法的原因 提供最优解决方案。没有第二个,第一个就说不通了,所以我 从为什么开始。

如果你想轰炸矩形(假设一个大矩形-还没有边缘情况) 你可以看到,只有这样才能减少空心矩形上的正方形 周长到0的意思是炸毁周长或者炸毁的空心矩形 就在外围的方块里。我称周长为图层1,其中的矩形为图层2。

一个重要的观点是,没有点轰炸层1,因为 你这样做得到的“爆炸半径”总是包含在爆炸半径内 另一个来自第2层的正方形。你应该很容易就能说服自己。

所以,我们可以把问题简化为找到一个最优的方法来炸开周长,然后我们可以重复这个过程,直到所有的平方都为0。

但当然了,如果有爆炸的可能,并不总能找到最优解 以一种不太理想的方式远离周边,但通过使用X个额外的炸弹制造 用>X炸弹减少内层的问题。如果我们调用 第一层,如果我们在第二层的某个地方放置一个额外的X炸弹(只是 在第1层内,我们可以减少之后轰炸第2层的努力吗 X ?换句话说,我们必须证明我们可以贪心化简外部 周长。

但是,我们知道我们可以贪婪。因为第2层的炸弹永远不会更多 有效减少第2层到0比战略上放置炸弹在第3层。和 因为和之前一样的原因-总有一个炸弹我们可以放在第3层 将影响第2层的每一个方块,炸弹放在第2层可以。所以,它可以 永远不要伤害我们的贪婪(在这个意义上的贪婪)。

所以,我们要做的就是找到最优的方法,通过轰炸将许可值降为0 下一个内层。

我们永远不会因为先把角落炸到0而受伤,因为只有内层的角落可以到达,所以我们真的没有选择(并且,任何可以到达角落的周长炸弹的爆炸半径都包含在内层角落的爆炸半径中)。

一旦我们这样做了,与0角相邻的周长上的正方形只能由内层的2个正方形到达:

0       A       B

C       X       Y

D       Z

在这一点上,周长实际上是一个封闭的1维环,因为任何炸弹都会减少3个相邻的正方形。除了角落附近的一些奇怪之处——X可以“击中”A、B、C和D。

Now we can't use any blast radius tricks - the situation of each square is symmetric, except for the weird corners, and even there no blast radius is a subset of another. Note that if this were a line (as Colonel Panic discusses) instead of a closed loop the solution is trivial. The end points must be reduced to 0, and it never harms you to bomb the points adjacent to the end points, again because the blast radius is a superset. Once you have made your endpoint 0, you still have a new endpoint, so repeat (until the line is all 0).

所以,如果我们可以优化地将层中的单个正方形减少到0,我们就有了一个算法(因为我们已经切断了循环,现在有了一条带有端点的直线)。我相信轰炸与最小值相邻的正方形(给你2个选项),这样在最小值的2个正方形内的最大值就是最小值(你可能不得不分割你的轰炸来管理这一点)将是最优的,但我还没有证明。

Well, suppose we number the board positions 1, 2, ..., n x m. Any sequence of bomb drops can be represented by a sequence of numbers in this set, where numbers can repeat. However, the effect on the board is the same regardless of what order you drop the bombs in, so really any choice of bomb drops can be represented as a list of n x m numbers, where the first number represents the number of bombs dropped on position 1, the second number represents the number of bombs dropped on position 2, etc. Let's call this list of n x m numbers the "key".

你可以试着先计算1个炸弹投下的所有板子状态,然后用这些来计算2个炸弹投下的所有板子状态,等等,直到你得到所有的0。但是在每一步中,您都将使用上面定义的键缓存状态,因此您可以在计算下一步时使用这些结果(一种“动态规划”方法)。

但是根据n、m的大小和网格中的数字,这种方法的内存需求可能会过多。一旦你计算了N + 1的所有结果,你就可以抛弃N个炸弹投掷的所有结果,所以这里有一些节省。当然,您不能以花费更长的时间为代价缓存任何东西——动态编程方法以内存换取速度。

在这里,线性规划方法似乎非常有用。

设Pm x n为包含位置值的矩阵:

现在定义一个炸弹矩阵B(x, y)m x n,其中1≤x≤m, 1≤y≤n如下所示

以这样一种方式

例如:

所以我们正在寻找一个矩阵Bm x n = [bij]

可以定义为炸弹矩阵的和: (qij将是我们在pij位置投放的炸弹数量) pij - bij≤0(为了更简洁,我们称之为P - B≤0)

而且,B应该使和最小。

我们也可以把B写成前面的丑矩阵:

由于P - B≤0(即P≤B),我们得到了如下线性不等式系统:

qmn x1定义为

PMN x 1定义为

我们可以说我们有一个方程组是smnxmn这个矩阵要倒转来解方程组。我自己没有扩展它,但我相信在代码中应该很容易做到。

现在,我们有一个最小的问题可以表述为

I believe it is something easy, almost trivial to be solved with something like the simplex algorithm (there is this rather cool doc about it). However, I do know almost no linear programming (I will take a course about it on Coursera but it is just in the future...), I had some headaches trying to understand it and I have a huge freelance job to finish so I just give up here. It can be that I did something wrong at some point, or that it can't go any further, but I believe this path can eventually lead to the solution. Anyway, I am anxious for your feedback.

(特别感谢这个神奇的网站从LaTeX表达式创建图片)