我更喜欢尽可能少的正式定义和简单的数学。
当前回答
大 O 是算法使用时间/空间的尺寸,与其输入的尺寸相比。
如果一个算法是O(n),那么时间/空间将与其输入相同的速度增加。
如果一个算法是O(n2)则时间/空间增加以其输入的速度为方形。
等等等。
其他回答
我找到了一个非常好的解释关于大O评分,特别是对于一个没有太多的数学的人。
https://rob-bell.net/2009/06/a-beginners-guide-to-big-o-notation/
在计算机科学中使用Big O评分来描述算法的性能或复杂性。Big O具体描述了最糟糕的情况,并且可以用来描述一个算法所需的执行时间或使用的空间(例如在内存或磁盘上)。
算法例(Java):
public boolean search(/* for */Integer K,/* in */List</* of */Integer> L)
{
for(/* each */Integer i:/* in */L)
{
if(i == K)
{
return true;
}
}
return false;
}
算法描述:
这个算法搜索一个列表,项目按项目,寻找一个密钥,在列表中的每个项目,如果它是密钥,然后返回真实,如果循环没有找到密钥,返回虚假。
Big-O 评分代表了复杂性(时间、空间等)的顶端。
要找到 The Big-O on Time Complexity:
计算时间(考虑到输入大小)最糟糕的案例需要: 最糟糕的案例: 关键不在列表中 时间(Worst-Case) = 4n+1 时间: O(4n+1) = O(n) <unk>在大O,恒例被忽视 O(n) ~ 线性
还有大欧米加,它代表了最佳案例的复杂性:
最佳案例:关键是第一个项目 时间(最佳案例) = 4 时间: Ω(4) = O(1) ~ Instant\Constant
当我们有一个函数,如f(n) = n+3 和我们想知道图表看起来如何喜欢,当n接近无限时,我们只是放下所有的连续和较低的顺序术语,因为它们不在乎什么时候n变得大。
常规和较低的命令时间的简单落下,正是找到下方和上方的功能的过程。
根据定义,一个函数是另一个函数的下层或上层界限,如果您可以找到一个恒定的函数,以便为每个 n 的输出比原始函数更大(或较小)。
f(n) = n*C > f(n) = n+3
而且是的 C = 2 会这样做,因此我们的函数 f(n) = n 可以是我们函数 f(x) = x + 3 的顶部界限。
相同的下限:
f(n) = n*C < f(n) = n+3
C = 2 會這樣做
大 O 评级是描述算法将运行多快的方式,因为有意数量的输入参数,我们将称之为“n”。在计算机科学中是有用的,因为不同的机器以不同的速度运行,简单地说算法需要 5 秒,不会告诉你很多,因为虽然你可能运行一个系统与 4.5 GHz 八核处理器,我可能运行一个系统。
如果你有一个合适的概念的无限在你的头脑,那么有一个非常简短的描述:
大 O 评级告诉你解决一个无限大的问题的成本。
此外,
常见因素不可忽视
如果你升级到一个可以运行你的算法的计算机两倍的速度,大 O 评级不会注意到这一点. 持续的因素改进太小,甚至在大 O 评级工作的规模中也会注意到。
然而,任何“大”比恒定的因素都可以被检测到。
如果上面的没有意义,那么你头脑中没有相容的直观的无限观念,你可能应该忽略上面的所有观念;我唯一知道如何使这些观念严格,或者解释它们是否已经是直观的有用,就是先教你大O评分或类似的东西。