我更喜欢尽可能少的正式定义和简单的数学。


当前回答

这是一个非常简单的解释,但我希望它涵盖了最重要的细节。

让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。

根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。

由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。

其他回答

这是一个非常简单的解释,但我希望它涵盖了最重要的细节。

让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。

根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。

由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。

上述说法是一个很好的开始,但不是完全真实的。

更准确的解释(数学)

n = 输入参数数

T(n) = 表达算法运行时间的实际函数为 n 的函数

c = 常态

f(n)= 表达算法运行时间为 n 的函数的约定函数

接下来,在大O方面,接近f(n)被认为足够好,只要下面的条件是真实的。

lim     T(n) ≤ c×f(n)
n→∞

方程式是如 n 接近无限, T 的 n 是少于或等于 c 次 f 的 n。

T(n)∈O(n)

回到英语

基于上面的数学定义,如果你说你的算法是一个大O的n,这意味着它是一个函数的n(输入参数的数量)或更快。

Big O of n 意味着我的算法运行至少如此之快. 你不能看你的算法的 Big O 评分,并说它很慢. 你只能说它很快。

大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。

Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。

这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。

此外,同意上述所有详细答案,希望这有助于!!!

从(源)可以读到:

大 O 评级根据其增长率定义函数:具有相同增长率的不同函数可以使用相同的 O 评级进行代表。

在计算机科学时间复杂性和空间复杂性理论中,人们可以认为大O评级是对时间和空间的某种最糟糕情况的算法的分类。

一个算法被称为采取线性时间/空间,或者O(n)时间/空间,如果其时间/空间复杂性是O(n)。

和 O(n log n) 如:

一个算法被称为在量子时间/空间中运行,如果T(n) = O(n log^k n)为某种积极的连续 k;线性时间/空间是 k = 1(来源)的情况。

此分類上一篇

大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”

因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。

我的名单

比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!

為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2

我希望这就像你想要的那样简单。