我更喜欢尽可能少的正式定义和简单的数学。
当前回答
这是一个非常简单的解释,但我希望它涵盖了最重要的细节。
让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。
根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。
由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。
其他回答
这是一个非常简单的解释,但我希望它涵盖了最重要的细节。
让我们说你的算法处理问题取决于某些“因素”,例如,让我们做它N和X。
根据 N 和 X,您的算法将需要一些操作,例如在 WORST 案例中,它是 3(N^2) + log(X) 操作。
由于Big-O不太关心恒定的因素(aka 3),你的算法的Big-O是O(N^2 + log(X))。它基本上翻译“你的算法需要最糟糕的案例规模的操作数量”。
上述说法是一个很好的开始,但不是完全真实的。
更准确的解释(数学)
n = 输入参数数
T(n) = 表达算法运行时间的实际函数为 n 的函数
c = 常态
f(n)= 表达算法运行时间为 n 的函数的约定函数
接下来,在大O方面,接近f(n)被认为足够好,只要下面的条件是真实的。
lim T(n) ≤ c×f(n)
n→∞
方程式是如 n 接近无限, T 的 n 是少于或等于 c 次 f 的 n。
T(n)∈O(n)
回到英语
基于上面的数学定义,如果你说你的算法是一个大O的n,这意味着它是一个函数的n(输入参数的数量)或更快。
Big O of n 意味着我的算法运行至少如此之快. 你不能看你的算法的 Big O 评分,并说它很慢. 你只能说它很快。
大 O 是一种代表任何函数的顶部界限的手段,我们通常使用它来表达一个函数的顶部界限,说明一个算法的运行时间。
Ex : f(n) = 2(n^2) +3n 是代表假设算法的运行时间的函数,Big-O 评级基本上给了这个函数的上限,即 O(n^2)。
这个评级基本上告诉我们,对于任何输入“n”的运行时间不会超过Big-O评级所表达的值。
此外,同意上述所有详细答案,希望这有助于!!!
从(源)可以读到:
大 O 评级根据其增长率定义函数:具有相同增长率的不同函数可以使用相同的 O 评级进行代表。
在计算机科学时间复杂性和空间复杂性理论中,人们可以认为大O评级是对时间和空间的某种最糟糕情况的算法的分类。
一个算法被称为采取线性时间/空间,或者O(n)时间/空间,如果其时间/空间复杂性是O(n)。
和 O(n log n) 如:
一个算法被称为在量子时间/空间中运行,如果T(n) = O(n log^k n)为某种积极的连续 k;线性时间/空间是 k = 1(来源)的情况。
此分類上一篇
大O只是一种方式来“表达”自己,以一种常见的方式,“运行我的代码需要多少时间/空间?”
因此,你可能明白“n2”是什么意思,但要更具体,玩你的想法,你有一个简单的,最简单的分类算法;泡沫分类。
我的名单
比较 1 和 6 是最大的? Ok 6 是正确的位置,前进! 比较 6 和 3, oh, 3 是更少的! 让我们移动, Ok 列表改变了,我们需要从现在开始!
為每個項目,你再看所有項目一次,為比較,這也是“n”,所以為每個項目,你看“n”時刻意味著n*n = n2
我希望这就像你想要的那样简单。