我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

嘿,我昨天才写的。它在Actionscript 3.0中,基本上是Javascript,尽管你可能没有相同的Point类。

//st = start of line segment
//b = the line segment (as in: st + b = end of line segment)
//pt = point to test
//Returns distance from point to line segment.  
//Note: nearest point on the segment to the test point is right there if we ever need it
public static function linePointDist( st:Point, b:Point, pt:Point ):Number
{
    var nearestPt:Point; //closest point on seqment to pt

    var keyDot:Number = dot( b, pt.subtract( st ) ); //key dot product
    var bLenSq:Number = dot( b, b ); //Segment length squared

    if( keyDot <= 0 )  //pt is "behind" st, use st
    {
        nearestPt = st  
    }
    else if( keyDot >= bLenSq ) //pt is "past" end of segment, use end (notice we are saving twin sqrts here cuz)
    {
        nearestPt = st.add(b);
    }
    else //pt is inside segment, reuse keyDot and bLenSq to get percent of seqment to move in to find closest point
    {
        var keyDotToPctOfB:Number = keyDot/bLenSq; //REM dot product comes squared
        var partOfB:Point = new Point( b.x * keyDotToPctOfB, b.y * keyDotToPctOfB );
        nearestPt = st.add(partOfB);
    }

    var dist:Number = (pt.subtract(nearestPt)).length;

    return dist;
}

此外,这里有一个关于这个问题的相当完整和可读的讨论:notejot.com

其他回答

这里是与c++答案相同的东西,但移植到pascal。点参数的顺序已经改变,以适应我的代码,但还是一样的东西。

function Dot(const p1, p2: PointF): double;
begin
  Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
  result.x := p1.x - p2.x;
  result.y := p1.y - p2.y;
end;

function ShortestDistance2(const p,v,w : PointF) : double;
var
  l2,t : double;
  projection,tt: PointF;
begin
  // Return minimum distance between line segment vw and point p
  //l2 := length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  l2 := Distance(v,w);
  l2 := MPower(l2,2);
  if (l2 = 0.0) then begin
    result:= Distance(p, v);   // v == w case
    exit;
  end;
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line.
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
  if (t < 0.0) then begin
    result := Distance(p, v);       // Beyond the 'v' end of the segment
    exit;
  end
  else if (t > 1.0) then begin
    result := Distance(p, w);  // Beyond the 'w' end of the segment
    exit;
  end;
  //projection := v + t * (w - v);  // Projection falls on the segment
  tt.x := v.x + t * (w.x - v.x);
  tt.y := v.y + t * (w.y - v.y);
  result := Distance(p, tt);
end;

这里没有看到Java实现,所以我将Javascript函数从接受的答案转换为Java代码:

static double sqr(double x) {
    return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
    return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
    double l2 = dist2(v, w);
    if (l2 == 0) return dist2(p, v);
    double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0) return dist2(p, v);
    if (t > 1) return dist2(p, w);
    return dist2(p, new DoublePoint(
            v.x + t * (w.x - v.x),
            v.y + t * (w.y - v.y)
    ));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
    return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
    public double x;
    public double y;

    public DoublePoint(double x, double y) {
        this.x = x;
        this.y = y;
    }
}

Lua: 查找线段(不是整条线)与点之间的最小距离

function solveLinearEquation(A1,B1,C1,A2,B2,C2)
--it is the implitaion of a method of solving linear equations in x and y
  local f1 = B1*C2 -B2*C1
  local f2 = A2*C1-A1*C2
  local f3 = A1*B2 -A2*B1
  return {x= f1/f3, y= f2/f3}
end


function pointLiesOnLine(x,y,x1,y1,x2,y2)
  local dx1 = x-x1
  local  dy1 = y-y1
  local dx2 = x-x2
  local  dy2 = y-y2
  local crossProduct = dy1*dx2 -dx1*dy2

if crossProduct ~= 0  then  return  false
else
  if ((x1>=x) and (x>=x2)) or ((x2>=x) and (x>=x1)) then
    if ((y1>=y) and (y>=y2)) or ((y2>=y) and (y>=y1)) then
      return true
    else return false end
  else  return false end
end
end


function dist(x1,y1,x2,y2)
  local dx = x1-x2
  local dy = y1-y2
  return math.sqrt(dx*dx + dy* dy)
 end


function findMinDistBetnPointAndLine(x1,y1,x2,y2,x3,y3)
-- finds the min  distance between (x3,y3) and line (x1,y2)--(x2,y2)
   local A2,B2,C2,A1,B1,C1
   local dx = y2-y1
   local dy = x2-x1
   if dx == 0 then A2=1 B2=0 C2=-x3 A1=0 B1=1 C1=-y1 
   elseif dy == 0 then A2=0 B2=1 C2=-y3 A1=1 B1=0 C1=-x1
   else
      local m1 = dy/dx
      local m2 = -1/m1
      A2=m2 B2=-1 C2=y3-m2*x3 A1=m1 B1=-1 C1=y1-m1*x1
   end
 local intsecPoint= solveLinearEquation(A1,B1,C1,A2,B2,C2)
if pointLiesOnLine(intsecPoint.x, intsecPoint.y,x1,y1,x2,y2) then
   return dist(intsecPoint.x, intsecPoint.y, x3,y3)
 else
   return math.min(dist(x3,y3,x1,y1),dist(x3,y3,x2,y2))
end
end

只是遇到了这个,我想我应该添加一个Lua实现。它假设点以表{x=xVal, y=yVal}给出,直线或线段由包含两个点的表给出(见下面的例子):

function distance( P1, P2 )
    return math.sqrt((P1.x-P2.x)^2 + (P1.y-P2.y)^2)
end

-- Returns false if the point lies beyond the reaches of the segment
function distPointToSegment( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    if t >= 0 and t <= 1 then   -- within line segment?
        return distance( projection, {x=P.x, y=P.y} )
    else
        return false
    end
end

-- Returns value even if point is further down the line (outside segment)
function distPointToLine( line, P )
    if line[1].x == line[2].x and line[1].y == line[2].y then
        print("Error: Not a line!")
        return false
    end

    local d = distance( line[1], line[2] )

    local t = ((P.x - line[1].x)*(line[2].x - line[1].x) + (P.y - line[1].y)*(line[2].y - line[1].y))/(d^2)

    local projection = {}
    projection.x = line[1].x + t*(line[2].x-line[1].x)
    projection.y = line[1].y + t*(line[2].y-line[1].y)

    return distance( projection, {x=P.x, y=P.y} )
end

使用示例:

local P1 = {x = 0, y = 0}
local P2 = {x = 10, y = 10}
local line = { P1, P2 }
local P3 = {x = 7, y = 15}
print(distPointToLine( line, P3 ))  -- prints 5.6568542494924
print(distPointToSegment( line, P3 )) -- prints false

对于感兴趣的人,这里是Joshua的Javascript代码到Objective-C的简单转换:

- (double)distanceToPoint:(CGPoint)p fromLineSegmentBetween:(CGPoint)l1 and:(CGPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    double dx = p.x - xx;
    double dy = p.y - yy;

    return sqrtf(dx * dx + dy * dy);
}

我需要这个解决方案与MKMapPoint一起工作,所以我将分享它,以防其他人需要它。只是一些小的改变,这将返回米为单位的距离:

- (double)distanceToPoint:(MKMapPoint)p fromLineSegmentBetween:(MKMapPoint)l1 and:(MKMapPoint)l2
{
    double A = p.x - l1.x;
    double B = p.y - l1.y;
    double C = l2.x - l1.x;
    double D = l2.y - l1.y;

    double dot = A * C + B * D;
    double len_sq = C * C + D * D;
    double param = dot / len_sq;

    double xx, yy;

    if (param < 0 || (l1.x == l2.x && l1.y == l2.y)) {
        xx = l1.x;
        yy = l1.y;
    }
    else if (param > 1) {
        xx = l2.x;
        yy = l2.y;
    }
    else {
        xx = l1.x + param * C;
        yy = l1.y + param * D;
    }

    return MKMetersBetweenMapPoints(p, MKMapPointMake(xx, yy));
}