一位面试官最近问了我这样一个问题:给定三个布尔变量a、b和c,如果三个变量中至少有两个为真,则返回true。

我的解决方案如下:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if ((a && b) || (b && c) || (a && c)) {
        return true;
    }
    else{
        return false;
    }
}

他说这还可以进一步改进,但如何改进呢?


当前回答

如果我把布尔值转换成一个数字,如果这个数字不是2的幂,它至少有两个真值。

a*4 + b*2 + c*1 = N
return( N != 0 && (N&(N-1)) != 0)

我只是给出了另一种选择。

其他回答

这个问题的最佳答案应该是:“作为一名员工,我写出来的东西很重要,这样我的意思就能清楚地表达出来,同时又能保持绩效所需的效率。”我是这样写的:

function atLeastTwoAreTrue(a, b, c) {
    return (a && b) || (b && c) || (a && c);
}

在现实中,这个测试是如此的刻意,以至于如果您用一个简单的注释来容纳它,那么编写一个最快、最神秘的方法是完全可以接受的。但是,一般来说,在这个一行代码的世界里,我们需要更多可读的代码。: -)

下面是一个测试驱动的通用方法。虽然不像目前提供的大多数解决方案那样“高效”,但是清晰、经过测试、有效且通用。

public class CountBooleansTest extends TestCase {
    public void testThreeFalse() throws Exception {
        assertFalse(atLeastTwoOutOfThree(false, false, false));
    }

    public void testThreeTrue() throws Exception {
        assertTrue(atLeastTwoOutOfThree(true, true, true));
    }

    public void testOnes() throws Exception {
        assertFalse(atLeastTwoOutOfThree(true, false, false));
        assertFalse(atLeastTwoOutOfThree(false, true, false));
        assertFalse(atLeastTwoOutOfThree(false, false, true));
    }

    public void testTwos() throws Exception {
        assertTrue(atLeastTwoOutOfThree(false, true, true));
        assertTrue(atLeastTwoOutOfThree(true, false, true));
        assertTrue(atLeastTwoOutOfThree(true, true, false));
    }

    private static boolean atLeastTwoOutOfThree(boolean b, boolean c, boolean d) {
        return countBooleans(b, c, d) >= 2;
    }

    private static int countBooleans(boolean... bs) {
        int count = 0;
        for (boolean b : bs)
            if (b)
                count++;
        return count;
    }
}

我不喜欢三元(return a ?(b || c):(b && c);从最上面的答案),我想我没有看到任何人提到过它。它是这样写的:

boolean atLeastTwo(boolean a, boolean b, boolean c) {
    if (a) {
        return b||c;
    } 
    else {
        return b&&C;
    }

这类问题可以用卡诺图来解决:

      | C | !C
------|---|----
 A  B | 1 | 1 
 A !B | 1 | 0
!A !B | 0 | 0
!A  B | 1 | 0

由此推断,第一行需要一组,第一列需要两组,得到聚基因润滑剂的最优解:

(C && (A || B)) || (A && B)  <---- first row
       ^
       |
   first column without third case

在Clojure中:

(defn at-least [n & bools]
  (>= (count (filter true? bools)) n)

用法:

(at-least 2 true false true)