下面是我生成一个数据框架的代码:

import pandas as pd
import numpy as np

dff = pd.DataFrame(np.random.randn(1,2),columns=list('AB'))

然后我得到了数据框架:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|
+------------+---------+--------+

当我输入命令时:

dff.mean(axis=1)

我得到:

0    1.074821
dtype: float64

根据pandas的参考,axis=1代表列,我希望命令的结果是

A    0.626386
B    1.523255
dtype: float64

我的问题是:轴在熊猫中是什么意思?


当前回答

我的想法是:Axis = n,其中n = 0,1等意味着矩阵沿该轴折叠(折叠)。所以在一个二维矩阵中,当你沿着0(行)折叠时,你实际上是一次对一列进行操作。对于高阶矩阵也是如此。

这与对矩阵中维数的正常引用不同,其中0 ->行和1 ->列。对于N维数组中的其他维度也是如此。

其他回答

它指定了计算平均值的轴。默认情况下axis=0。这与numpy一致。显式指定axis时的平均使用量(在numpy中)。mean, axis==None,默认情况下,它计算扁平数组上的平均值),其中,沿行轴=0(即,以pandas为单位的索引),沿列轴=1。为了增加清晰度,可以选择指定axis='index'(而不是axis=0)或axis='columns'(而不是axis=1)。

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      0     | 0.626386| 1.52325|----axis=1----->
+------------+---------+--------+
             |         |
             | axis=0  |
             ↓         ↓

熊猫的设计师韦斯•麦金尼(Wes McKinney)曾大量从事金融数据方面的工作。将列视为股票名称,将指数视为每日价格。然后,您可以猜测关于此财务数据的默认行为是什么(即,axis=0)。Axis =1可以简单地认为是“另一个方向”。

例如,诸如mean()、sum()、describe()、count()等统计函数都默认按列执行,因为对每只股票执行这些函数更有意义。Sort_index (by=)也默认为column。Fillna (method='ffill')将沿着列填充,因为它是相同的股票。Dropna()默认为row,因为您可能只是想丢弃当天的价格,而不是丢弃该股票的所有价格。

类似地,方括号索引指的是列,因为更常见的是选择股票而不是选择日期。

我是这样理解的:

比如说,如果你的操作需要在数据框架中从左到右/从右到左,你显然是在合并列。你在不同的列上操作。 这是轴=1

例子

df = pd.DataFrame(np.arange(12).reshape(3,4),columns=['A', 'B', 'C', 'D'])
print(df)
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11 

df.mean(axis=1)

0    1.5
1    5.5
2    9.5
dtype: float64

df.drop(['A','B'],axis=1,inplace=True)

    C   D
0   2   3
1   6   7
2  10  11

这里需要注意的是,我们是在列上操作

类似地,如果您的操作需要在数据帧中从上到下/从下到上遍历,那么您正在合并行。轴为0。

在过去的一个小时里,我也一直在试着求出坐标轴。上述所有答案中的语言,以及文档都没有任何帮助。

要回答我现在理解的问题,在Pandas中,axis = 1或0意味着在应用函数时希望保持哪个轴头不变。

注意:当我说标题时,我指的是索引名

扩展你的例子:

+------------+---------+--------+
|            |  A      |  B     |
+------------+---------+---------
|      X     | 0.626386| 1.52325|
+------------+---------+--------+
|      Y     | 0.626386| 1.52325|
+------------+---------+--------+

对于axis=1=columns:我们保持列标题不变,并通过改变数据应用平均值函数。 为了演示,我们保持列标题为常量:

+------------+---------+--------+
|            |  A      |  B     |

现在我们填充A和B值的一个集合,然后找到平均值

|            | 0.626386| 1.52325|  

然后我们填充下一组A和B值,并找到平均值

|            | 0.626386| 1.52325|

类似地,对于axis=rows,我们保持行标题不变,并不断更改数据: 为了演示,首先修复行标题:

+------------+
|      X     |
+------------+
|      Y     |
+------------+

现在填充第一组X和Y值,然后求平均值

+------------+---------+
|      X     | 0.626386
+------------+---------+
|      Y     | 0.626386
+------------+---------+

然后填充下一组X和Y值,然后找到平均值:

+------------+---------+
|      X     | 1.52325 |
+------------+---------+
|      Y     | 1.52325 |
+------------+---------+

总之,

当axis=columns时,将修复列标题并更改数据,这些数据将来自不同的行。

当axis=rows时,您将修复行标题并更改数据,这些数据将来自不同的列。

我对熊猫还是个新手。但这是我对熊猫轴的理解:


恒变方向


0列行向下|


1行列向右——>


所以要计算一列的均值,这一列应该是常数,但它下面的行可以改变(变化)所以它是axis=0。

类似地,要计算一行的平均值,特定的行是常数,但它可以遍历不同的列(变化),axis=1。